分析 化简可得$\underset{lim}{n→∞}$$\frac{1}{\frac{(x-2)^{n}}{{3}^{n}}+3-\frac{1}{n}}$=$\frac{1}{3}$,从而可得$\underset{lim}{n→∞}$($(\frac{x-2}{3})^{n}$-$\frac{1}{n}$)=0,从而可得-1<$\frac{x-2}{3}$<1,从而解得.
解答 解:∵$\underset{lim}{n→∞}$$\frac{n•{3}^{n}}{n(x-2)^{n}+n•{3}^{n+1}-{3}^{n}}$=$\frac{1}{3}$,
∴$\underset{lim}{n→∞}$$\frac{1}{\frac{(x-2)^{n}}{{3}^{n}}+3-\frac{1}{n}}$=$\frac{1}{3}$,
∴$\underset{lim}{n→∞}$($(\frac{x-2}{3})^{n}$-$\frac{1}{n}$)=0,
∴-1<$\frac{x-2}{3}$<1,
故-1<x<5.
点评 本题考查了极限的求法及转化思想与整体思想的应用.
科目:高中数学 来源: 题型:选择题
| A. | 12种 | B. | 24种 | C. | 36种 | D. | 48种 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 小赵 | B. | 小李 | C. | 小孙 | D. | 小钱 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 甲方式 | 乙方式 | 合计 | |
| 优秀 | |||
| 不优秀 | |||
| 合计 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com