精英家教网 > 高中数学 > 题目详情
2.$\underset{lim}{n→∞}$$\frac{n•{3}^{n}}{n(x-2)^{n}+n•{3}^{n+1}-{3}^{n}}$=$\frac{1}{3}$,求实数x的取值范围.

分析 化简可得$\underset{lim}{n→∞}$$\frac{1}{\frac{(x-2)^{n}}{{3}^{n}}+3-\frac{1}{n}}$=$\frac{1}{3}$,从而可得$\underset{lim}{n→∞}$($(\frac{x-2}{3})^{n}$-$\frac{1}{n}$)=0,从而可得-1<$\frac{x-2}{3}$<1,从而解得.

解答 解:∵$\underset{lim}{n→∞}$$\frac{n•{3}^{n}}{n(x-2)^{n}+n•{3}^{n+1}-{3}^{n}}$=$\frac{1}{3}$,
∴$\underset{lim}{n→∞}$$\frac{1}{\frac{(x-2)^{n}}{{3}^{n}}+3-\frac{1}{n}}$=$\frac{1}{3}$,
∴$\underset{lim}{n→∞}$($(\frac{x-2}{3})^{n}$-$\frac{1}{n}$)=0,
∴-1<$\frac{x-2}{3}$<1,
故-1<x<5.

点评 本题考查了极限的求法及转化思想与整体思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.6辆车组成一个车队,其中有2辆警车,若要求这辆警车一辆在最前面,另一辆在最后面,则不同安排顺序有(  )
A.12种B.24种C.36种D.48种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.小赵、小钱、小孙、小李四位同学被问到谁去过长城时,
小赵说:我没去过;
小钱说:小李去过;
小孙说;小钱去过;
小李说:我没去过.
假定四人中只有一人说的是假话,由此可判断一定去过长城的是(  )
A.小赵B.小李C.小孙D.小钱

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C的左、右焦点分别为$(-\sqrt{3},0)$、$(\sqrt{3},0)$,且经过点$(1,\frac{{\sqrt{3}}}{2})$.
(1)求椭圆C的方程:
(2)直线y=kx(k∈R,k≠0)与椭圆C相交于A,B两点,D点为椭圆C上的动点,且|AD|=|BD|,请问△ABD的面积是否存在最小值?若存在,求出此时直线AB的方程:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知抛物线C:y2=2px(p>0)的焦点坐标为(1,0),则p=2;若抛物线C上一点A到其准线的距离与到原点距离相等,则A点到x轴的距离为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知$\underset{lim}{n→∞}$($\frac{3{n}^{2}+cn+1}{a{n}^{2}+bn}$-4n)=5,求常数a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1的离心率为$\frac{{\sqrt{2}}}{2}$,焦距为2,右焦点为F,过点F的直线交椭圆于A、B两点.
(1)求椭圆C的方程;
(2)在x轴上是否存在定点M,使得$\overrightarrow{MA}•\overrightarrow{MB}$为定值?若存在,求出定值和定点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=cosx(${2\sqrt{3}$sinx-cosx)+cos2(${\frac{π}{2}$-x)+1.
(Ⅰ)求函数f(x)的对称轴;
(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且$\frac{cosA}{cosB}$=$\frac{a}{2c-b}$,若不等式f(B)<m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某农场用甲、乙两种不同的方式培育了一批甘蔗苗,培育一段时间后,同时随机抽取两种方式培育的甘蔗苗各15株,测量其高度,得到如图的茎叶图(单位:cm)
(Ⅰ)依茎叶图判断用哪种方式培育的甘蔗苗平均高度值较大?
(Ⅱ)如果规定甘蔗苗高度不低于85cm的为生长优秀,请填写下面的2×2列联表,并判断能否有99%的把握认为甘蔗苗高度与培育方式有关”
甲方式乙方式合计
优秀
不优秀
合计
下面临界值表仅供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n({ad-cd)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案