精英家教网 > 高中数学 > 题目详情
11.已知f(x)=cosx(${2\sqrt{3}$sinx-cosx)+cos2(${\frac{π}{2}$-x)+1.
(Ⅰ)求函数f(x)的对称轴;
(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且$\frac{cosA}{cosB}$=$\frac{a}{2c-b}$,若不等式f(B)<m恒成立,求实数m的取值范围.

分析 (Ⅰ)借助辅助角公式,将f(x)化简为一个三角函数式,由此得到对称轴.
(Ⅱ)由正弦定理得到A,由此得到B的范围,即可得到f(B)的范围.

解答 解:(Ⅰ)∵f(x)=cosx(${2\sqrt{3}$sinx-cosx)+cos2(${\frac{π}{2}$-x)+1
=$\sqrt{3}$sin2x-cos2x+1=2sin(2x-$\frac{π}{6}$)+1,
令2x-$\frac{π}{6}$=$\frac{π}{2}$+kπ,解得x=$\frac{π}{3}$+$\frac{kπ}{2}$,k∈Z,
∴函数f(x)的对称轴为x=$\frac{π}{3}$+$\frac{kπ}{2}$,k∈Z,
(Ⅱ)在△ABC中,∵$\frac{cosA}{cosB}$=$\frac{a}{2c-b}$,由正弦定理得$\frac{cosA}{cosB}$=$\frac{sinA}{2sinC-sinB}$,
可变形得,sin(A+B)=2cosAsinC,即sinC=2cosAsinC,
∵sinC≠0,∴cosA=$\frac{1}{2}$,∵0<A<π,∴A=$\frac{π}{3}$,
∴f(B)=2sin(2B-$\frac{π}{6}$)+1,只需f(x)max<m,
∵0<B<$\frac{2π}{3}$,∴-$\frac{π}{6}$<2B-$\frac{π}{6}$<$\frac{7π}{6}$,
∴-$\frac{1}{2}$<sin(2B-$\frac{π}{6}$)≤1,即0<f(B)≤3,
∴m>3.

点评 本题考查三角函数的化简以及由正弦定理得到最值问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.正方体ABCD-A1B1C1D1中,BD1与平面A1C1D所成的角为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.$\underset{lim}{n→∞}$$\frac{n•{3}^{n}}{n(x-2)^{n}+n•{3}^{n+1}-{3}^{n}}$=$\frac{1}{3}$,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.点P是在△ABC所在平面上一点,若$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{PB}$•$\overrightarrow{PC}$=$\overrightarrow{PC}$•$\overrightarrow{PA}$,AB=2,AC=3,∠A=60°.存在实数λ,μ,使$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则(  )
A.λ=$\frac{2}{3}$,μ=$\frac{1}{9}$B.λ=$\frac{1}{3}$,μ=$\frac{2}{9}$C.λ=$\frac{2}{3}$,μ=$\frac{1}{3}$D.λ=$\frac{2}{3}$,μ=$\frac{2}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的部分图象如图所示.
(1)求f(x)的解析式,并求函数f(x)在[-$\frac{π}{12}$,$\frac{π}{4}$]上的值域;
(2)在△ABC中,AB=3,AC=2,f(A)=1,求sin2B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若m+2n=1(m>0,n>0),则$\frac{1}{2m}$+$\frac{1}{n}$的最小值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,c=2,acosC=csinA,若当a=x0时的△ABC有两解,则x0的取值范围是(2,2$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}和{bn}满足a1a2…an=($\sqrt{2}$)${\;}^{{b}_{n}}$,n∈N*,若{an}为等比数列,且a1=2,b3=6+b2
(Ⅰ)求a3及数列{bn}的通项公式;
(Ⅱ)设cn=$\frac{1}{{a}_{n}}$-$\frac{1}{{b}_{n}}$,n∈N*,记数列{cn}的前n项和为Sn
(i)求Sn
(ii)若Sk≥Sn恒成立,求正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.正四面体ABCD中,AB,BC,CD,DA的中点依次记为E,F,G,H.直线EG与FH的关系是(  )
A.相交且垂直B.异面且垂直C.相交且不垂直D.异面且不垂直

查看答案和解析>>

同步练习册答案