分析 (1)由题意可得c=1,运用离心率公式可得a=$\sqrt{2}$,由a,b,c的关系可得b=1,进而得到椭圆方程;
(2)在x轴上假设存在定点M(m,0),使得$\overrightarrow{MA}•\overrightarrow{MB}$为定值.若直线的斜率存在,设AB的斜率为k,F(1,0),由y=k(x-1)代入椭圆方程,运用韦达定理和向量数量积的坐标表示,结合恒成立思想,即可得到定点和定值;检验直线AB的斜率不存在时,也成立.
解答 解:(1)由题意可得2c=2,e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,
可得c=1,a=$\sqrt{2}$,b=$\sqrt{{a}^{2}-{c}^{2}}$=1,
即有椭圆的方程为$\frac{{x}^{2}}{2}$+y2=1;
(2)在x轴上假设存在定点M(m,0),使得$\overrightarrow{MA}•\overrightarrow{MB}$为定值.
若直线的斜率存在,设AB的斜率为k,F(1,0),
由y=k(x-1)代入椭圆方程x2+2y2=2,
可得(1+2k2)x2-4k2x+2k2-2=0,
x1+x2=$\frac{4{k}^{2}}{1+2{k}^{2}}$,x1x2=$\frac{2{k}^{2}-2}{1+2{k}^{2}}$,
y1y2=k2(x1-1)(x2-1)=k2[x1x2+1-(x1+x2)]
=k2($\frac{2{k}^{2}-2}{1+2{k}^{2}}$+1-$\frac{4{k}^{2}}{1+2{k}^{2}}$)=-$\frac{{k}^{2}}{1+{k}^{2}}$,
则$\overrightarrow{MA}•\overrightarrow{MB}$=(x1-m)(x2-m)+y1y2=x1x2+m2-m(x1+x2)+y1y2
=$\frac{2{k}^{2}-2}{1+2{k}^{2}}$+m2-m•$\frac{4{k}^{2}}{1+2{k}^{2}}$-$\frac{{k}^{2}}{1+{k}^{2}}$=$\frac{{m}^{2}-2+(2{m}^{2}-4m+1){k}^{2}}{1+2{k}^{2}}$,
欲使得$\overrightarrow{MA}•\overrightarrow{MB}$为定值,则2m2-4m+1=2(m2-2),
解得m=$\frac{5}{4}$,
此时$\overrightarrow{MA}•\overrightarrow{MB}$=$\frac{25}{16}$-2=-$\frac{7}{16}$;
当AB斜率不存在时,令x=1,代入椭圆方程,可得y=±$\frac{\sqrt{2}}{2}$,
由M($\frac{5}{4}$,0),可得$\overrightarrow{MA}•\overrightarrow{MB}$-$\frac{7}{16}$,符合题意.
故在x轴上存在定点M($\frac{5}{4}$,0),使得$\overrightarrow{MA}•\overrightarrow{MB}$为定值-$\frac{7}{16}$.
点评 本题考查椭圆方程的求法,注意运用离心率公式,考查存在性问题的解法,注意运用分类讨论的思想方法和联立直线方程和椭圆方程,运用韦达定理和向量的数量积的坐标表示,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | $\frac{12}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | λ=$\frac{2}{3}$,μ=$\frac{1}{9}$ | B. | λ=$\frac{1}{3}$,μ=$\frac{2}{9}$ | C. | λ=$\frac{2}{3}$,μ=$\frac{1}{3}$ | D. | λ=$\frac{2}{3}$,μ=$\frac{2}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com