| 班级 | 1 | 2 | 3 | 4 | 5 | 6 |
| 频数 | 6 | 10 | 12 | 12 | 6 | 4 |
| 达到 | 3 | 6 | 6 | 6 | 4 | 3 |
分析 (1)根据表格确定出50人达到自己实际的水平的人数,即可求出所求概率;
(2)确定出调查的4人中高考成绩没有达到实际水平的人数为ξ,进而求出各自的概率,得到分布列,即可求出所求期望.
解答 解:(1)根据题意得:调查的50人中达到自己实际的水平有:3+6+6+6+4+3=28(人),
所求的概率为P=$\frac{28}{50}$=0.56;
(2)调查的4人中高考成绩没有达到实际水平的人数为ξ,则ξ=0,1,2,3,
当P(ξ=0)=$\frac{{{C}_{4}^{2}C}_{3}^{2}}{{{C}_{6}^{2}C}_{4}^{2}}$=$\frac{1}{5}$;P(ξ=1)=$\frac{{{{C}_{2}^{1}C}_{4}^{1}C}_{3}^{2}{{+C}_{4}^{2}C}_{3}^{1}}{{{C}_{6}^{2}C}_{4}^{2}}$=$\frac{7}{15}$;P(ξ=2)=$\frac{{{C}_{2}^{2}C}_{3}^{2}{{{+C}_{2}^{1}C}_{4}^{1}C}_{3}^{1}}{{{C}_{6}^{2}C}_{4}^{2}}$=$\frac{3}{10}$;P(ξ=3)=$\frac{{{C}_{2}^{2}C}_{3}^{1}}{{{C}_{6}^{2}C}_{4}^{2}}$=$\frac{1}{30}$,
所求的分布列为
| ξ | 0 | 1 | 2 | 3 |
| P | $\frac{1}{5}$ | $\frac{7}{15}$ | $\frac{3}{10}$ | $\frac{1}{30}$ |
点评 此题考查了离散型随机变量的期望与方差,以及离散型随机变量及其分布列,弄清题中的数据是解本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2\sqrt{x}}$ | B. | $\frac{1}{\sqrt{x}}$ | C. | 2$\sqrt{x}$ | D. | $\frac{1}{2}$$\sqrt{x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| P(K2>k0) | 0.50 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| K0 | 0.445 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [3,+∞) | B. | (0,3] | C. | [$\frac{1}{2}$,3] | D. | (0,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com