精英家教网 > 高中数学 > 题目详情
某校高三学生数学调研测试后,随机地抽取部分学生进行成绩统计,如图所示是抽取出恶报的所有学生的测试成绩统计结果的频率分布直方图.

(1)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计该校高三学生数学调研测试的平均分;
(2)用分层抽样的方法在分数段为(110,130]的学生中抽取一个容量为6的样本,则(110,130],(120,130]的学生分别抽取多少人?
(3)将(2)中抽取的样本看成一个总体,从中任取2人,求恰好有1人在分数段(110,120]的概率.
考点:古典概型及其概率计算公式,频率分布直方图
专题:概率与统计
分析:(1)同一组数据常用该组区间的中点值作为代表,将中点值与每一组的频率相差再求出它们的和即可求出本次考试的平均分;
(2)先计算出在[110,120)、[120,130)分数段抽取的人数比例,再有样本的容量求出抽取的人数;
(3)设从样本中任取2人,至多有1人在分数段[120,130)为事件A,然后列出基本事件空间包含的基本事件,以及事件A包含的基本事件,最后将包含事件的个数求出题目比值即可.
解答: 解:(1)该校高三学生数学调研测试的平均分为
.
x
=75×0.005×10+85×0.020×10+95×0.035×10+105×0.025×10+115×0.010×10+125×0.005×10=98(分)
(2)设在(110,120],(120,130]的学生分别抽取x、y人,
根据分层抽样的方法得:x:y=2:1,
∵在(110,130]的学生中抽取一个容量为6的样本,
∴在(110,120]分数段抽取4人,在(120,130]分数段抽取2人;
(3)设从样本中任取2人,恰好有1人在分数段(110,120]为事件A,
在(110,120]分数段抽取4人,记为1、2、3、4;在(120,130]分数段抽取2人,分别记为a,b;
则基本事件空间包含的基本事件有:(1,2)、(1,3)、(1,4)、(1,a)、(1,b)、
(2,3)、(2,4)、(2,a)、(2、b)、(3,4)、(3,a)、(3,b)、(4,a)、(4,b)、(a,b)共15种,
则事件A包含的基本事件有:(1,a)、(1,b)、(2,a)、(2、b)、(3,a)、(3,b)、(4,a)、(4,b)共8种,
根据古典概型的计算公式得,P(A)=
8
15
点评:本题主要考查了利用频率分布直方图求平均数,以及由古典概型的计算公式求随机事件的概率的有关问题,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个简单组合体的三视图及尺寸如图所示(单位:cm),该组合体的体积为(  )
A、42cm3
B、48cm3
C、56cm3
D、44cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,对一切正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上.
(1)求a1,a2
(2)求数列{an}的通项公式;
(3)若bn=
1
anan+1an+2
,求证数列{bn}的前n项和Tn
1
60

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=t(t为非零常数),其前n项和为Sn,满足an+1=2Sn
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若对任意的n∈N*,都有λan>n(n+1)成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sin(x+
π
4
)cos(x+
π
4
)-sin(2x+π).
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)若将f(x)的图象向右平移
π
12
个单位,得到函数g(x)的图象,求函数g(x)在区间[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos(x-
π
6
),sin(x-
π
4
)),
b
=(cos(x-
π
6
),sin(x+
π
4
)),f(x)=2
a
b
-1.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[-
π
12
π
2
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
mx3+(4+m)x2,g(x)=alnx,其中a≠0.
(1)已知点P(1,0)在y=f(x)的图象上,求m的值;
(2)当a=8时,设F(x)=f′(x)+g(x),讨论F(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
m-2x+4
x-2
(m≠0)
,满足条件f(a+x)+f(a-x)=2b(x≠2),则a+b的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinθ=
1
3
,θ∈(-
π
2
π
2
),则sin(π-θ)sin(
3
2
π-θ)的值为
 

查看答案和解析>>

同步练习册答案