精英家教网 > 高中数学 > 题目详情
已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q;
:(Ⅰ)由题意知e==,所以e2===.即a2=b2
又因为b==,所以a2=4,b2=3.故椭圆的方程为=1.…4分
(Ⅱ)由题意知直线PB的斜率存在,设直线PB的方程为y=k(x-4),和椭圆方程联立解决.
,得(4k2+3)x2-32k2x+64k2-12=0. ①…6分
设点B(x1,y1),E(x2,y2),则A(x1,-y1).直线AE的方程为y-y2=(x-x2).令y=0,得x=x2-.将y1=k(x1-4),y2=k(x2-4)代入,
整理,得x=. ②…8分
由①得x1+x2=,x1x2=…10分  代入②整理,得x=1.
所以直线AE与x轴相交于定点Q(1,0)
(1)离心率为=,椭圆的短半轴为半径的圆与直线x-y+=0相切,b==,解得a2=4,b2=3;(Ⅱ)直线PB的方程为y=k(x-4)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知椭圆 为焦点,且离心率. 
(Ⅰ)求椭圆的方程;
(Ⅱ)过点斜率为的直线与椭圆有两个不同交点,求的范围。
(Ⅲ)设椭圆轴正半轴、轴正半轴的交点分别为,是否存在直线,满足(Ⅱ)中的条件且使得向量垂直?如果存在,写出的方程;如果不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,点是双曲线上的动点,是双曲线的焦点,的平分线上一点,且.某同学用以下方法研究:延长于点,可知为等腰三角形,且的中点,得.类似地:点是椭圆上的动点,是椭圆的焦点,的平分线上一点,且,则的取值范围是          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C (ab>0)的离心率为,且经过点P(1,)。
(1)求椭圆C的方程;
(2)设F是椭圆C的右焦点,M为椭圆上一点,以M为圆心,MF为半径作圆M。问点M满足什么条件时,圆My轴有两个交点?
(3)设圆My轴交于DE两点,求点DE距离的最大值。   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题p:方程表示焦点在y轴上的椭圆;命题q:双曲线的离心率,若p、q有且只有一个为真,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,椭圆上的点到右焦点F的最近距离为2,若椭圆C与x轴交于A、B两点,M是椭圆C上异于A、B的任意一点,直线MA交直线于G点,直线MB交直线于H点。
(1)求椭圆C的方程;
(2)试探求以GH为直径的圆是否恒经过x轴上的定点?若经过,求出定点的坐标;若不经过,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线与椭圆共焦点,且以为渐近线,求双曲线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆两焦点为  ,P在椭圆上,若 △的面积的最大值为12,则椭圆方程为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,(其中)的离心率分别为,则(   ).
A.B.
C.D.大小不确定

查看答案和解析>>

同步练习册答案