精英家教网 > 高中数学 > 题目详情
已知命题p:方程表示焦点在y轴上的椭圆;命题q:双曲线的离心率,若p、q有且只有一个为真,求m的取值范围。
解:将方程改写为
只有当时,方程表示的曲线是焦点在y轴上的椭圆,所以命题p等价于;因为双曲线的离心率
所以,且1,解得
所以命题q等价于;若p真q假,则
若p假q真,则
综上:的取值范围为
本试题主要考查了椭圆的方程,以及双曲线的几何性质的综合运用,并运用命题的真假关系,来确定参数m的取值范围。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的焦点是
(1)求此椭圆的标准方程
(2)设点P在此椭圆上,且有的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与椭圆有公共焦点,且离心率的双曲线的方程是
A.B.
C. D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直角梯形ABMN中,∠NAB=90°,AN∥BM,AB=2,AN=,BM=,椭圆C以A,B为焦点且过点N.

(1)建立适当的坐标系,求椭圆C方程;
(2)若点E满足,问是否存在不平行AB的直线L与椭圆C交于P,Q两点,且|PE|=|QE|,若存在,求出直线L与AB夹角的范围;若不存在,说明理由?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆.,分别为椭圆的左,右焦点,, 分别为椭圆的左,右顶点.过右焦点且垂直于轴的直线与椭圆在第一象限的交点为.
(1) 求椭圆的标准方程;
(2) 直线与椭圆交于,两点, 直线交于点.当直线变化时, 点是否恒在一条定直线上?若是,求此定直线方程;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,一个焦点为
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线交椭圆两点,若点都在以点为圆心的圆上,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆C:=1的左.右焦点为,离心率为,直线与x轴、y轴分别交于点是直线与椭圆C的一个公共点,是点关于直线的对称点,设
(Ⅰ)证明:; (Ⅱ)确定的值,使得是等腰三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

. (本小题满分12分)
如图,设抛物线C1:的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率的椭圆C2与抛物线C1在X轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线上一动点,且M在P与Q之间运动.
(I)当m =1时,求椭圆C2的方程;
(II)当的边长恰好是三个连续的自然数时,求面积的最大值.

查看答案和解析>>

同步练习册答案