精英家教网 > 高中数学 > 题目详情
. (本小题满分12分)
如图,设抛物线C1:的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率的椭圆C2与抛物线C1在X轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线上一动点,且M在P与Q之间运动.
(I)当m =1时,求椭圆C2的方程;
(II)当的边长恰好是三个连续的自然数时,求面积的最大值.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题共13分)已知椭圆的右焦点为为椭圆的上顶点,为坐标原点,且△是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在直线交椭圆于两点, 且使点为△的垂心(垂心:三角形三边高线的交点)?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆的左焦点为为椭圆上一点,其横坐标为,则=(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题p:方程表示焦点在y轴上的椭圆;命题q:双曲线的离心率,若p、q有且只有一个为真,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线,圆O:=36(O为坐标原点),椭圆C:=1(a>b>0)的离心率为e=,直线l被圆O截得的弦长与椭圆的长轴长相等。
(I)求椭圆C的方程;(II)过点(3,0)作直线l,与椭圆C交于A,B两点设(O是坐标原点),是否存在这样的直线l,使四边形为ASB的对角线长相等?若存在 ,求出直线l的方程,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线与椭圆共焦点,且以为渐近线,求双曲线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦点在轴上,则它的离心率的取值范围为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的离心率,长轴的左右两个端点分别为
(1)求椭圆C的方程;
(2)点在该椭圆上,且,求点轴的距离;
(3)过点(1,0)且斜率为1的直线与椭圆交于P,Q两点,求△OPQ的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知焦距为4的椭圆的左、右顶点分别为,椭圆的右焦点为,过作一条垂直于轴的直线与椭圆相交于,若线段的长为
(1)求椭圆的方程;
(2)设是直线上的点,直线与椭圆分别交于点,求证:直线必过轴上的一定点,并求出此定点的坐标;

查看答案和解析>>

同步练习册答案