精英家教网 > 高中数学 > 题目详情
函数f(x)=
x2,(x>1)
(4-
a
2
)x-1,(x≤1)

(1)若f(2)=f(1),求a的值 
(2)若f(x)是R上的增函数,求实数a的取值范围.
分析:(1)由函数解析式可表示出方程f(2)=f(1),解出即可;
(2)由f(x)为R上的增函数,得x>1时f(x)递增,x≤1时f(x)递增,且12≥4-
a
2
-1
,由此可得关于a的不等式组,解出即可;
解答:解:(1)解:f(2)=22=4,f(1)=(4-
a
2
)×1-1,
由f(2)=f(1),得4=)=(4-
a
2
)×1-1,解得a=-2;
(2)由f(x)为R上的增函数,得x>1时f(x)递增,x≤1时f(x)递增,且12≥4-
a
2
-1

所以有
4-
a
2
>0
12≥4-
a
2
-1
,解得4≤a<8,
故实数a的取值范围是4≤a<8.
点评:本题考查函数单调性的应用,分段函数求值要“对号入座”,解决(2)问可借助图形分析.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x1、x2(x1≠x2)处取得极值,求证:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+2x在[m,n]上的值域是[-1,3],则m+n所成的集合是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2x-3的图象为曲线C,点P(0,-3).
(1)求过点P且与曲线C相切的直线的斜率;
(2)求函数g(x)=f(x2)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2+2x,x∈(0,3]的值域为
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+
12
x
+lnx的导函数为f′(x),则f′(2)=
5
5

查看答案和解析>>

同步练习册答案