精英家教网 > 高中数学 > 题目详情
已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OAl的距离等于4?若存在,求出直线l的方程;若不存在,请说明理由.
(1)=1(2)直线l不存在
(1)依题意,可设椭圆C的方程为=1(a>b>0),且可知左焦点为F′(-2,0).
从而有解得
a2b2c2,所以b2=12,故椭圆C的方程为=1.
(2)假设存在符合题意的直线l,由题知直线l的斜率与直线OA的斜率相等,故可设直线l的方程为yxt.由得3x2+3txt2-12=0.
因为直线l与椭圆C有公共点,所以Δ=(3t)2-4×3(t2-12)≥0,解得-4t≤4.
另一方面,由直线OAl的距离d=4,可得=4,从而t=±2.由于±2∉[-4,4],所以符合题意的直线l不存在
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点为,点在椭圆上.

(1)求椭圆的方程;
(2)点在圆上,且在第一象限,过作圆的切线交椭圆于,两点,问:△的周长是否为定值?如果是,求出定值;如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直线l与椭圆+=1(a>b>0)交于A(x1,y1),B(x2,y2)两点,已知m=(ax1,by1),n=(ax2,by2),若m⊥n且椭圆的离心离e=,又椭圆经过点(,1),O为坐标原点.
(1)求椭圆的方程.
(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的中心在坐标原点,焦点在x轴上,长轴长是短轴长的2倍,且经过点M(2,1),平行于OM的直线ly轴上的截距为m,直线l与椭圆相交于AB两个不同点.

(1)求实数m的取值范围;
(2)证明:直线MAMBx轴围成的三角形是等腰三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的右焦点为,直线轴交于点,若(其中为坐标原点).
(1)求椭圆的方程;
(2)设是椭圆上的任意一点,为圆的任意一条直径(为直径的两个端点),求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,点是双曲线右支上相异两点,且满足为线段的中点,直线的斜率为
(1)求双曲线的方程;
(2)用表示点的坐标;
(3)若的中垂线交轴于点,直线轴于点,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于
(1)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;
(2)当时,过点的直线交曲线两点,设点关于轴的对称点为(不重合), 试问:直线轴的交点是否是定点?若是,求出定点,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,椭圆的的一个顶点和两个焦点构成的三角形的面积为4,
(1)求椭圆C的方程;
(2)已知直线与椭圆C交于A, B两点,若点M(, 0),求证为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,F1,F2是椭圆C1+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形, 则C2的离心率是________.

查看答案和解析>>

同步练习册答案