精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
13
x3+ax2+bx,a,b∈R

(1)曲线C:y=f(x)经过点P(1,2),且曲线C在点P处的切线平行于直线y=2x+1,求a,b的值.
(2)已知f(x)在区间(1,2)内存在两个极值点,求证:0<a+b<2.
分析:(1)根据曲线y=f(x)经过P(1,2),所以该点坐标适合曲线方程,又曲线C在点P处的切线平行于直线y=2x+1,所以f(1)=2,联立两方程可求得a,b的值;
(2)要使f(x)在区间(1,2)内存在两个极值点,则有f(x)=0在在(1,2)上有两个不等实数根,根据三个二次的关系列式,通过整理变形可以得到要整的结论.
解答:解:(1)由f(x)=
1
3
x3+ax2+bx
,得:f(x)=x2+2ax+b
因为y=f(x)经过点P(1,2),所以有
1
3
×13+a×12+b=2
,即3a+3b-5=0 ②
又曲线C在点P处的切线平行于直线y=2x+1,所以f(1)=2a+b+1=2,即2a+b-1=0   ①
联立①②得:a=-
2
3
,b=
7
3

(2)因为函数f(x)在区间(1,2)内存在两个极值点,所以导函数对应的二次方程x2+2ax+b=0在(1,2)
上有两个不等实数根,则
△=(2a)2-4b>0
-2<a<-1
1+2a+b>0
4+4a+b>0

-2<a<-1
1+2a+b>0
相加得a+b>0,
由△>0得b<a2
a+b<a+a2=(a+
1
2
)2-
1
4
<2
,则结论得证.
点评:本题考查了利用导数研究函数极值及函数切线方程问题,考查了数学转化思想,训练了求求曲线在某点的切线方程的方法及如何让运用三个二次的结合解决二次方程在给定区间上根的问题,对基本运算进行了考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案