精英家教网 > 高中数学 > 题目详情

【题目】为自然数1234的一个全排列,且满足,则这样的排列有_______.

【答案】9

【解析】

利用和值为6,分解为4个非负数的和,最大值为3,最小值为0,列出所有情况即可.

x1x2x3x4为自然数1234的一个全排列,且满足|x11|+|x22|+|x33|+|x44|6

可得4个数的和为6,共有,0+0+3+361+1+1+360+1+2+361+1+2+26

所有x1x2x3x4分别为:

0+0+3+36;类型有:

4231

1+1+1+36;类型有:

2341

4123

0+1+2+36;类型有:

4132

4213

3241

2431

1+1+2+26;类型有:

2413

3142

9种.

故答案为:9

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合.

(1)若的充分条件,求的取值范围.

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,分别为棱的中点.

1)在上确定点M,使平面,并说明理由。

2)若侧面侧面,求直线与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:,一束光线从点出发发射到上的点经反射后,再经反射,落到线段上(不含端点)斜率的范围为____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙、丙三个羽毛球协会的运动员人数分别为18918,先采用分层抽样的方法从这三个协会中抽取5名运动员参加比赛.

1)求应从这三个协会中分别抽取的运动员人数;

2)将抽取的5名运动员进行编号,编号分别为,从这5名运动员中随机抽取2名参加双打比赛. 编号为的两名运动员至少有一人被抽到为事件A,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,内接于圆的正方形边长为1,圆内切于正方形,正方形内接于圆···,正方形内接于圆,圆内切于正方形,正方形内接于圆,由此无穷个步骤进行下去记圆的面积记作,记正方形的面积记作

1)求的值

2)记的所有项和为的所有项和为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线y=5,:

(1)曲线上与直线y=2x-4平行的切线方程.

(2)求过点P(0,5),且与曲线相切的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂有甲,乙两个车间生产同一种产品,,甲车间有工人人,乙车间有工人人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,甲车间抽取的工人记作第一组,乙车间抽取的工人记作第二组,并对他们中每位工人生产完成的一件产品的事件(单位:)进行统计,按照进行分组,得到下列统计图.

分别估算两个车间工人中,生产一件产品时间少于的人数

分别估计两个车间工人生产一件产品时间的平均值,并推测车哪个车间工人的生产效率更高?

从第一组生产时间少于的工人中随机抽取人,记抽取的生产时间少于的工人人数为随机变量,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】社区服务是高中学生社会实践活动的一个重要内容,汉中某中学随机抽取了100名男生、100名女生,了解他们一年参加社区服务的时间,按(单位:小时)进行统计,得出男生参加社区服务时间的频率分布表和女生参加社区服务时间的频率分布直方图.

(1)完善男生参加社区服务时间的频率分布表和女生参加社区服务时间的频率分布直方图.

抽取的100名男生参加社区服务时间的频率分布表

社区服务时间

人数

频率

0.05

20

0.35

30

合计

100

1

学生社区服务时间合格与性别的列联表

不合格的人数

合格的人数

(2)按高中综合素质评价的要求,高中学生每年参加社区服务的时间不少于20个小时才为合格,根据上面的统计图表,完成抽取的这200名学生参加社区服务时间合格与性别的列联表,并判断是否有以上的把握认为参加社区服务时间达到合格程度与性别有关,并说明理由.

(3)用以上这200名学生参加社区服务的时间估计全市9万名高中学生参加社区服务时间的情况,并以频率作为概率.

(i)求全市高中学生参加社区服务时间不少于30个小时的人数.

(ⅱ)对我市高中生参加社区服务的情况进行评价.

参考公式

0.150

0.100

0.050

0.025

0.010

0.002

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其

查看答案和解析>>

同步练习册答案