精英家教网 > 高中数学 > 题目详情
(2012•安徽模拟)如图,在直三棱柱ABC-A1B1C1中,AB=AC,点D是BC的中点.
(1)求证:A1B∥平面ADC1
(2)如果点E是B1C1的中点,求证:平面A1BE⊥平面BCC1B1
分析:(1)证明A1B∥平面ADC1,利用线面平行的判定,只需证明A1B∥OD即可
(2)证明平面A1BE⊥平面BCC1B1,利用面面垂直的判定,证明A1E⊥平面BCC1B1即可.
解答:证明:(1)连接A1C交AC1于点O,连接OD
在△A1BC中,∵点D是BC的中点,O是A1C的中点
∴A1B∥OD
∵OD?平面ADC1,A1B?平面ADC1
∴A1B∥平面ADC1
(2)直三棱柱ABC-A1B1C1中,C1C⊥平面ABC
∴C1C⊥AD
在△ABC中,AD⊥BC
∵BC∩C1C=C
∴AD⊥平面BCC1B1
连接DE,∵E是B1C1的中点
∴四边形B1BDE为平行四边形
∴B1B∥ED,B1B=ED
∵B1B∥A1A,B1B=A1A
∴ED∥A1A,ED=A1A
∴四边形A1ADE为平行四边形
∴A1E∥AD
∴A1E⊥平面BCC1B1
∵A1E?平面A1BE
∴平面A1BE⊥平面BCC1B1
点评:本题考查线面平行,考查面面垂直,解题的关键是正确运用线面平行,面面垂直的判定定理,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安徽模拟)在复平面内,复数z=
1+i
i-2
对应的点位于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)定义在R上的奇函数f(x)满足:x≤0时f(x)=ax+b(a>0且a≠1),f(1)=
1
2
,则f(2)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)(理)若变量x,y满足约束条件
x+y-3≤0
x-y+1≥0
y≥1
,则z=|y-2x|的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)下列说法不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知f(x)=2
3
sinx+
sin2x
sinx

(1)求f(x)的最大值,及当取最大值时x的取值集合.
(2)在三角形ABC中,a,b,c分别是角A,B,C所对的边,对定义域内任意x,有f(x)≤f(A),若a=
3
,求
AB
AC
的最大值.

查看答案和解析>>

同步练习册答案