精英家教网 > 高中数学 > 题目详情
过点P(2,4)作两条互相垂直的直线l1、l2,l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.

解法一:设点M的坐标为(x,y),

∵M为线段AB的中点,

∴A的坐标为(2x,0),B的坐标为(0,2y).

∵l1⊥l2,且l1、l2过点P(2,4),

∴PA⊥PB,kPA·kPB=-1.

而kPA=,kPB=(x≠1).

=-1(x≠1),

整理得x+2y-5=0(x≠1).

∵当x=1时,A、B的坐标分别为(2,0)、(0,4),

∴线段AB的中点坐标是(1,2),它满足方程x+2y-5=0.

综上所述,点M的轨迹方程是x+2y-5=0.

解法二:如图,设M的坐标为(x,y),则A、B两点坐标分别是(2x,0)、(0,2y),连接PM.

∵l1⊥l2,

∴2|PM|=|AB|.

而|PM|=,

|AB|=,∴2.

化简,得x+2y-5=0为所求轨迹方程.

解法三:设M的坐标为(x,y),连接PM、OM,由l1⊥l2知A、O、B、P四点共圆,AB为圆的直径,M为圆心,则有|OM|=|MP|.

.

化简得x+2y-5=0,为所求轨迹方程.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网过点P(2,4)作两条互相垂直的直线l1、l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(2,4)作两条互相垂直的直线l1、l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:高考数学一轮复习必备(第66课时):第八章 圆锥曲线方程-轨迹问题(1)(解析版) 题型:解答题

过点P(2,4)作两条互相垂直的直线l1、l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2011年高考数学复习:8 平面解析几何 质量检测(解析版) 题型:解答题

过点P(2,4)作两条互相垂直的直线l1、l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.

查看答案和解析>>

同步练习册答案