精英家教网 > 高中数学 > 题目详情
精英家教网过点P(2,4)作两条互相垂直的直线l1、l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.
分析:设M的坐标为(x,y),欲求线段AB的中点M的轨迹方程,只须求出坐标x,y的关系式即可,由题意得2|PM|=|AB|,利用两点间的距离公式将点的坐标代入后化简即得M的轨迹方程.
解答:精英家教网解:设M的坐标为(x,y),
则A、B两点的坐标分别是(2x,0),(0,2y),连接PM,
∵l1⊥l2,∴2|PM|=|AB|.
而|PM|=
(x-2)2+(y-4)2

|AB|=
(2x)2+(2y)2

∴2
(x-2)2+(y-4)2
=
4x2+4y2

化简,得x+2y-5=0即为所求的轨迹方程.
点评:本题主要考查了轨迹方程、两条直线垂直与倾斜角、斜率的关系等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过点P(2,4)作两条互相垂直的直线l1、l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(2,4)作两条互相垂直的直线l1、l2,l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:高考数学一轮复习必备(第66课时):第八章 圆锥曲线方程-轨迹问题(1)(解析版) 题型:解答题

过点P(2,4)作两条互相垂直的直线l1、l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2011年高考数学复习:8 平面解析几何 质量检测(解析版) 题型:解答题

过点P(2,4)作两条互相垂直的直线l1、l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.

查看答案和解析>>

同步练习册答案