精英家教网 > 高中数学 > 题目详情

在△ABC中,内角A,B,C的对边分别为a,b,c.已知数学公式
(I)求数学公式的值;
(II)若cosB=数学公式,△ABC的周长为5,求b的长,并求数学公式的值.

解:(I)因为
所以
即:cosAsinB-2sinBcosC=2sinCcosB-COSbsinA
所以sin(A+B)=2sin(B+C),即sinC=2sinA
所以=2
(II)由(1)可知c=2a…①
a+b+c=5…②
b2=a2+c2-2accosB…③
cosB=…④
解①②③④可得a=1,b=c=2;
所以b=2,由余弦定理可知cosA==,所以sinA=
=
=
=
=
分析:(I)利用正弦定理化简等式的右边,然后整理,利用两角和的正弦函数求出 的值.
(II)利用(1)可知c=2a,结合余弦定理,三角形的周长,即可求出b的值.利用余弦定理求出cosA,sinA,通过两角和的余弦函数以及二倍角公式,即可求解的值.
点评:本题是中档题,考查正弦定理、余弦定理的应用、两角和的三角函数的应用,函数与方程的思想,考查计算能力,常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对边长分别为a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,则b=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,且a,b是方程x2-2
3
x+2=0的两根,2cos(A+B)=1,则△ABC的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c.已知A=45°,a=6,b=3
2
,则B的大小为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c,已知B=60°,不等式x2-4x+1<0的解集为{x|a<x<c},则b=
13
13

查看答案和解析>>

同步练习册答案