精英家教网 > 高中数学 > 题目详情
如果方程
x2
a2
+
y2
a+6
=1
表示焦点在x轴上的椭圆,则实数a的取值范围是(  )
A.a>3B.a<-2
C.a>3或a<-2D.a>3或-6<a<-2
由题意,∵方程
x2
a2
+
y2
a+6
=1
表示焦点在x轴上的椭圆,
∴a2>a+6>0,解得a>3或-6<a<-2
∴实数a的取值范围是a>3或-6<a<-2
故选D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网给定椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),称圆心在坐标原点O,半径为
a2+b2
的圆是椭圆C的“伴随圆”.
(1)若椭圆C过点(
5
,0)
,且焦距为4,求“伴随圆”的方程;
(2)如果直线x+y=3
2
与椭圆C的“伴随圆”有且只有一个交点,那么请你画出动点Q(a,b)轨迹的大致图形;
(3)已知椭圆C的两个焦点分别是F1(-
2
,0)、F2
2
,0),椭圆C上一动点M1满足|
M1F1
|+|
M1F
2
|=2
3
.设点P是椭圆C的“伴随圆”上的动点,过点P作直线l1、l2使得l1、l2与椭圆C都各只有一个交点,且l1、l2分别交其“伴随圆”于点M、N.当P为“伴随圆”与y轴正半轴的交点时,求l1与l2的方程,并求线段|
MN
|
的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•楚雄州模拟)已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的一个顶点为B(0,4),离心率e=
5
5
,直线l交椭圆于M、N两点.
(1)若直线l的方程为y=x-4,求弦MN的长;
(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线l方程的一般式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关二模)已知椭圆
x2
a2
+
y2
a2-1
=1(a>1)的左右焦点为F1,F2,抛物线C:y2=2px以F2为焦点且与椭圆相交于点M(x1,y1)、N(x2,y2),点M在x轴上方,直线F1M与抛物线C相切.
(1)求抛物线C的方程和点M、N的坐标;
(2)设A,B是抛物线C上两动点,如果直线MA,MB与y轴分别交于点P,Q.△MPQ是以MP,MQ为腰的等腰三角形,探究直线AB的斜率是否为定值?若是求出这个定值,若不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•合肥模拟)已知离心率为
2
2
的椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)的左右焦点分别为F1、F2,圆C2:x2+y2=b2与直线l:y=
3
3
(x+4)
相切.
(1)求椭圆的标准方程;
(2)如果直线l绕着它与x轴的交点旋转,且与椭圆相交于P1、P2两点,设直线P1F1与P2F1的斜率分别为k1和k2,求证:k1+k2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•徐汇区三模)定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆C1
x2
4
+y2=1

(1)若椭圆C2
x2
16
+
y2
4
=1
,判断C2与C1是否相似?如果相似,求出C2与C1的相似比;如果不相似,请说明理由;
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围?
(3)如图:直线l与两个“相似椭圆”
x2
a2
+
y2
b2
=1
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分别交于点A,B和点C,D,证明:|AC|=|BD|

查看答案和解析>>

同步练习册答案