精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)求函数的单调区间;

2)设函数有两个极值点),若恒成立,求实数的取值范围.

【答案】1)分类讨论,详见解析;(2

【解析】

1)求出导函数,令,利用判别式讨论的取值范围,结合导数与函数单调性的关系即可求解.

2)根据题意可得是方程的两个不等正实根,由(1)知,利用韦达定理得,且,然后分离参数只需恒成立,,从而令,利用导数求出的最小值即可求解.

1)因为

所以

时,,即

所以函数单调递增区间为

时,

,则,所以,即

所以函数单调递增区间为

,则,由,即

,即

所以函数的单调递增区间为;单调递减区间为

综上,当时,函数单调递增区间为

时,函数的单调递增区间为,单调递减区间为

2)由(1)得

有两个极值点,则是方程的两个不等正实根,

由(1)知.则,故

要使恒成立,只需恒成立.

因为

,则

时,为减函数,所以

由题意,要使恒成立,只需满足

所以实数的取值范围

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆长轴长为4,右焦点到左顶点的距离为3

1)求椭圆的方程;

2)设过原点的直线交椭圆于两点(不在坐标轴上),连接并延长交椭圆于点,若,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形与等边所在平面互相垂直,分别是线段的中点.

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其定义域为.(其中常数,是自然对数的底数)

1)求函数的递增区间;

2)若函数为定义域上的增函数,且,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】湖北七市州高三523日联考后,从全体考生中随机抽取44名,获取他们本次考试的数学成绩和物理成绩,绘制成如图散点图:

根据散点图可以看出之间有线性相关关系,但图中有两个异常点.经调查得知,考生由于重感冒导致物理考试发挥失常,考生因故未能参加物理考试.为了使分析结果更科学准确,剔除这两组数据后,对剩下的数据作处理,得到一些统计的值:其中分别表示这42名同学的数学成绩、物理成绩,242的相关系数

1)若不剔除两名考生的数据,用44组数据作回归分析,设此时的相关系数为.试判断的大小关系,并说明理由;

2)求关于的线性回归方程,并估计如果考生参加了这次物理考试(已知考生的数学成绩为125分),物理成绩是多少?

3)从概率统计规律看,本次考试七市州的物理成绩服从正态分布,以剔除后的物理成绩作为样本,用样本平均数作为的估计值,用样本方差作为的估计值.试求七市州共50000名考生中,物理成绩位于区间(62.885.2)的人数的数学期望.

附:①回归方程中:

②若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体中,平面分别为线段的中点,现将四面体以为轴旋转,则线段在平面内投影长度的取值范围是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点到准线的距离为2,直线与抛物线交于不同的两点.

1)求抛物线的方程;

2)是否存在与的取值无关的定点,使得直线的斜率之和恒为定值?若存在,求出所有点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,九儿问甲歌就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.”这首歌决的大意是:一位老公公有九个儿子,九个儿子从大到小排列,相邻两人的年龄差三岁,并且儿子们的年龄之和为207岁,请问大儿子多少岁,其他几个儿子年龄如何推算.”在这个问题中,记这位公公的第个儿子的年龄为,则

A.17B.29C.23D.35

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示

(1)由折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司2019年3月份的利润;

(2)甲公司新研制了一款产品,需要采购一批新型材料,现有两种型号的新型材料可供选择,按规定每种新型材料最多可使用个月,但新材料的不稳定性会导致材料损坏的年限不相同,现对两种型号的新型材料对应的产品各件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:

使用寿命

材料类型

个月

个月

个月

个月

总计

如果你是甲公司的负责人,你会选择采购哪款新型材料?

参考数据:.参考公式:回归直线方程为,其中 .

查看答案和解析>>

同步练习册答案