【题目】已知函数.
(1)求函数的单调区间;
(2)设函数有两个极值点(),若恒成立,求实数的取值范围.
【答案】(1)分类讨论,详见解析;(2).
【解析】
(1)求出导函数,令,利用判别式讨论的取值范围,结合导数与函数单调性的关系即可求解.
(2)根据题意可得是方程的两个不等正实根,由(1)知,利用韦达定理得,且,然后分离参数只需恒成立,,从而令,利用导数求出的最小值即可求解.
(1)因为,
所以.
令,,
当即时,,即,
所以函数单调递增区间为.
当即或时,.
若,则,所以,即,
所以函数单调递增区间为.
若,则,由,即得或;
由,即得.
所以函数的单调递增区间为;单调递减区间为.
综上,当时,函数单调递增区间为;
当时,函数的单调递增区间为,单调递减区间为.
(2)由(1)得,
若有两个极值点,则是方程的两个不等正实根,
由(1)知.则,故,
要使恒成立,只需恒成立.
因为
令,则,
当时,,为减函数,所以.
由题意,要使恒成立,只需满足.
所以实数的取值范围.
科目:高中数学 来源: 题型:
【题目】设椭圆长轴长为4,右焦点到左顶点的距离为3.
(1)求椭圆的方程;
(2)设过原点的直线交椭圆于两点(不在坐标轴上),连接并延长交椭圆于点,若,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】湖北七市州高三5月23日联考后,从全体考生中随机抽取44名,获取他们本次考试的数学成绩和物理成绩,绘制成如图散点图:
根据散点图可以看出与之间有线性相关关系,但图中有两个异常点.经调查得知,考生由于重感冒导致物理考试发挥失常,考生因故未能参加物理考试.为了使分析结果更科学准确,剔除这两组数据后,对剩下的数据作处理,得到一些统计的值:其中,分别表示这42名同学的数学成绩、物理成绩,,2,…,42,与的相关系数.
(1)若不剔除两名考生的数据,用44组数据作回归分析,设此时与的相关系数为.试判断与的大小关系,并说明理由;
(2)求关于的线性回归方程,并估计如果考生参加了这次物理考试(已知考生的数学成绩为125分),物理成绩是多少?
(3)从概率统计规律看,本次考试七市州的物理成绩服从正态分布,以剔除后的物理成绩作为样本,用样本平均数作为的估计值,用样本方差作为的估计值.试求七市州共50000名考生中,物理成绩位于区间(62.8,85.2)的人数的数学期望.
附:①回归方程中:
②若,则
③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点到准线的距离为2,直线与抛物线交于不同的两点,.
(1)求抛物线的方程;
(2)是否存在与的取值无关的定点,使得直线,的斜率之和恒为定值?若存在,求出所有点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,“九儿问甲歌”就是其中一首:“一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.”这首歌决的大意是:“一位老公公有九个儿子,九个儿子从大到小排列,相邻两人的年龄差三岁,并且儿子们的年龄之和为207岁,请问大儿子多少岁,其他几个儿子年龄如何推算.”在这个问题中,记这位公公的第个儿子的年龄为,则( )
A.17B.29C.23D.35
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示
(1)由折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司2019年3月份的利润;
(2)甲公司新研制了一款产品,需要采购一批新型材料,现有,两种型号的新型材料可供选择,按规定每种新型材料最多可使用个月,但新材料的不稳定性会导致材料损坏的年限不相同,现对,两种型号的新型材料对应的产品各件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:
使用寿命 材料类型 | 个月 | 个月 | 个月 | 个月 | 总计 |
如果你是甲公司的负责人,你会选择采购哪款新型材料?
参考数据:,.参考公式:回归直线方程为,其中 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com