【题目】已知抛物线
的焦点
到准线
的距离为2,直线
与抛物线交于不同的两点
,
.
![]()
(1)求抛物线的方程;
(2)是否存在与
的取值无关的定点
,使得直线
,
的斜率之和恒为定值?若存在,求出所有点
的坐标;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】如图是某学校研究性课题《什么样的活动最能促进同学们进行垃圾分类》向题的统计图(每个受访者都只能在问卷的5个活动中选择一个),以下结论错误的是( )
![]()
A. 回答该问卷的总人数不可能是100个
B. 回答该问卷的受访者中,选择“设置分类明确的垃圾桶”的人数最多
C. 回答该问卷的受访者中,选择“学校团委会宣传”的人数最少
D. 回答该问卷的受访者中,选择“公益广告”的人数比选择“学校要求”的少8个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
和圆
:
,
,
为椭圆
的左、右焦点,点
在椭圆
上,当直线
与圆
相切时,
.
(Ⅰ)求
的方程;
(Ⅱ)直线
:
与
轴交于点
,且与椭圆
和圆
都相切,切点分别为
,
,记
和
的积分别为
和
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业接到生产3000台某产品的
三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件),已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为k(k为正整数).
(1)设生产
部件的人数为
,分别写出完成
三种部件生产需要的时间;
(2)假设这三种部件的生产同时开工,试确定正整数k的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率
,椭圆
上的点到其左焦点
的最大距离为
.
(1)求椭圆的标准方程;
(2)过椭圆
左焦点
的直线
与椭圆
交于
两点,直线
,过点
作直线
的垂线与直线
交于点
,求
的最小值和此时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为
,准线为
,过
的直线与
相交于
两点.
(1)以
为直径的圆与
轴交
两点,若
,求
;
(2)点
在
上,过点
且垂直于
轴的直线与
分别相交于
两点,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了对某种商品进行合理定价,需了解该商品的月销售量
(单位:万件)与月销售单价
(单位:元/件)之间的关系,对近
个月的月销售量
和月销售单价![]()
数据进行了统计分析,得到一组检测数据如表所示:
月销售单价 |
|
|
|
|
|
|
月销售量 |
|
|
|
|
|
|
(1)若用线性回归模型拟合
与
之间的关系,现有甲、乙、丙三位实习员工求得回归直线方程分别为:
,
和
,其中有且仅有一位实习员工的计算结果是正确的.请结合统计学的相关知识,判断哪位实习员工的计算结果是正确的,并说明理由;
(2)若用
模型拟合
与
之间的关系,可得回归方程为
,经计算该模型和(1)中正确的线性回归模型的相关指数
分别为
和
,请用
说明哪个回归模型的拟合效果更好;
(3)已知该商品的月销售额为
(单位:万元),利用(2)中的结果回答问题:当月销售单价为何值时,商品的月销售额预报值最大?(精确到
)
参考数据:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com