精英家教网 > 高中数学 > 题目详情

已知二次函数处取得极值,且在点处的切线与直线平行. 
(1)求的解析式;      (2)求函数的单调递增区间及极值;
(3)求函数的最值.

解: (1) .     
(2) 有极小值为0.   在有极大值.           
(3)由及(2),得,函数的最大值为2,最小值为0.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分10分)宁波市的一家报刊点,从报社买进《宁波日报》的价格是每份0.20元,卖出的价格是每份0.3元,卖不掉的报纸可以以每份0.05元的价格退回报社。在一个月(30天计)里,有20天可以卖出400份,其余10天每天只能卖出250份,但是每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使得每月所获利润最大?并计算他一个月最多可以赚多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分) 若二次函数f(x)=ax2+bx+c(a≠0)的图象关于y轴对称,
且f(-2)>f(3),设m>-n>0.
(1) 试证明函数f(x)在(0,+∞)上是减函数;
(2) 试比较f(m)和f(n)的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
⑴ 若对一切实数x恒成立,求实数a的取值范围。
⑵ 求在区间上的最小值的表达式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 已知二次函数满足条件,及.
(1)求的解析式;(2)求上的最大和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米。
(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 已知二次函数满足条件,及.
(1)求的解析式;(2)求上的最大和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数满足.
(1)设,求的上的值域;
(2)设,在上是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般
情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千
米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度
为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:
时,车流速度是车流密度的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,
单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)

查看答案和解析>>

同步练习册答案