分析 根据等比数列前n项和公式建立方程关系进行求解即可.
解答 解:∵等比数列{an}中,公比q=2,a1+a4+a7…+a97=11,
∴$\frac{{a}_{1}[1-({q}^{3})^{33}]}{1-{q}^{3}}=11$①,
而S99=$\frac{{a}_{1}(1-{q}^{99})}{1-q}$②,
两式相比得 $\frac{{S}_{99}}{11}=\frac{1-{q}^{3}}{1-q}=\frac{1-8}{1-2}$=7,
即S99=77.
故答案为:77.
点评 本题主要考查数列求和的计算,根据等比数列前n项和公式建立方程思想是解决本题的关键,是基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com