精英家教网 > 高中数学 > 题目详情
18.已知集合A={x|x2-ax+a2-12=0},B={x|x2-2x-8=0},C={x|mx+1=0}.
(Ⅰ)若A=B,求a的值;       
(Ⅱ)若B∪C=B,求实数m的值组成的集合.

分析 (Ⅰ)根据A=B,求出a的值化简;
(Ⅱ)由B与C的并集为B,得到C为B的子集,确定出m的范围即可.

解答 解:(Ⅰ)∵A={x|x2-ax+a2-12=0},B={x|x2-2x-8=0}={x|(x-4)(x+2)=0}={-2,4},且A=B,
∴-2和4为A中方程的解,即-2+4=a,
解得:a=2;
(Ⅱ)∵B∪C=B,
∴C⊆B,
当C=∅时,方程mx+1=0无解,即m=0;
当C≠∅时,x=-2或x=4为方程mx+1=0的解,
把x=-2代入方程得:m=$\frac{1}{2}$;把x=4代入方程得:m=-$\frac{1}{4}$,
则实数m的值组成的集合为{-$\frac{1}{4}$,0,$\frac{1}{2}$}.

点评 此题考查了并集及其运算,以及集合的相等,熟练掌握并集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知两个点M(-5,0)和N(5,0),若直线上存在点P,使|PM|-|PN|=6,则称该直线为“B型直线”.给出下列四条直线:(1)y=x+1;(2)y=2; (3)y=$\frac{4}{3}$x;(4)y=2x+1判断是“B型直线”的是(  )
A.(1)、(2)B.(2)、(3)C.(1)、(3)D.(2)、(4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=ln(4-x2)+$\sqrt{1-tanx}$的定义域为(-$\frac{π}{2}$,$\frac{π}{4}$]∪($\frac{π}{2}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.等比数列{an}中,公比q=2,a1+a4+a7…+a97=11,则数列{an}的前99项的和S99=77.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=3cos($\frac{3π}{2}$+2ωx)+sin(2ωx-π)+1,ω>0
(1)若ω=1,f(x+θ)是偶函数,求θ的最小值.
(2)若ω=1,存在x∈[$\frac{π}{12}$,$\frac{π}{3}$],使(f(x)-1)2-(f(x)-1)m+3≤0成立,求m取值范围.
(3)若y=f(x)-1在x∈(0,2015)上至少存在2016个最值点,求ω范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数z满足$\frac{z}{z+3i}$=1+4i,则复数z的虚部为(  )
A.-3B.11C.11iD.-11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(x)是定义在R上的奇函数满足:f(x)=f (x+4),当x∈(0,2)时,f(x)=2x2,则f(7)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,E,F分别为PA,BD的中点,PA=PD=AD=2.
(1)证明:EF∥平面PBC;
(2)若$PB=\sqrt{6}$,求三棱锥A-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知球O的表面积是其直径的$2\sqrt{3}π$倍,则球O的体积为4$\sqrt{3}$π.

查看答案和解析>>

同步练习册答案