精英家教网 > 高中数学 > 题目详情

养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为,高,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大(高不变);二是高度增加(底面直径不变)。
(1)分别计算按这两种方案所建的仓库的体积;
(2)分别计算按这两种方案所建的仓库的表面积(地面无需用材料);
(3)哪个方案更经济些?

(1)(2)(3)方案二B比方案一更经济

解析试题分析:(1)根据方案一,则仓库的底面直径变成16m,由圆锥的体积公式建立模型.根据方案二,则仓库的高变成8m,由圆锥的体积公式建立模型.
(2)根据方案一,仓库的底面直径变成16m,由表面积公式建立模型;根据方案二,则仓库的高变成8m,由表面积公式建立模型,
(3)方案更经济些,在于容量大,用材少,即体积大,表面积小,所以比较V2,V1,S2,S1即可.
试题解析:(1)如果按方案一,仓库的底面直径变成,则仓库的体积

如果按方案二,仓库的高变成,则仓库的体积

(2)如果按方案一,仓库的底面直径变成,半径为.
棱锥的母线长为
则仓库的表面积
如果按方案二,仓库的高变成.
棱锥的母线长为则仓库的表面积
(3)方案二B比方案一更经济.
考点:函数模型的选择与应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

对于函数f(x)若存在x0∈R,f(x0)=x0成立,则称x0为f(x)的不动点.已知f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;
(3)在(2)的条件下,若y=f(x)图象上A,B两点的横坐标是函数f(x)的不动点,且A,B两点关于直线y=kx+对称,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

湛江为建设国家卫生城市,现计划在相距20 km的赤坎区(记为A)霞山区(记为B)两城区外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对市区的影响度与所选地 
点到市区的距离有关,对赤坎区和霞山区的总影响度为两市区的影响度之和,记C点到赤坎区的距离为x km,建在C处的垃圾处理厂对两市区的总影响度为y.统计调查表明:垃圾处理厂对赤坎区的影响度与所选地点到赤坎区的距离的平方成反比,比例系数为4;对霞山区的影响度与所选地点到霞山区的距离的平方成反比,比例系数为k.当垃圾处理厂建在的中点时,对两市区的总影响度为0.065.
(1)将y表示成x的函数;
(2)讨论(1)中函数的单调性,并判断上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到赤坎区的距离;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)解方程:
(2)令,求证:

(3)若是实数集上的奇函数,且
对任意实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中释放的浓度y(单位:毫克/立方米)随着时间(单位:天)变化的函数关系式近似为若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用.
(1)若一次喷洒4个单位的净化剂,则净化时间可达几天?
(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a)个单位的药剂,要使接下来的4天中能够持续有效净化,试求的最小值(精确到0.1,参考数据:取1.4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数,若在定义域存在实数,满足,则称为“局部奇函数”.
(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由;
(2)设是定义在上的“局部奇函数”,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本(万元)与处理量(吨)之间的函数关系可近似的表示为:
,且每处理一吨废弃物可得价值为万元的某种产品,同时获得国家补贴万元.
(1)当时,判断该项举措能否获利?如果能获利,求出最大利润;
如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?
(2)当处理量为多少吨时,每吨的平均处理成本最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价,减少进货量的办法来增加利润,已知这种商品每件销售价提高1元,销售量就要减少10件,问该商场将销售价每件定为多少元时,才能使得每天所赚的利润最多?销售价每件定为多少元时,才能保证每天所赚的利润在300元以上?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求下列各式的值.
(1)log535+2-log5-log514;
(2)log2×log3×log5.

查看答案和解析>>

同步练习册答案