ÉèMÊÇÓÉÂú×ãÏÂÁÐÌõ¼þµÄº¯Êýf£¨x£©¹¹³ÉµÄ¼¯ºÏ£º¡°¢Ù·½³Ìf£¨x£©-x=0ÓÐʵÊý¸ù£»¢Úº¯Êýf£¨x£©µÄµ¼Êýf¡ä£¨x£©Âú×ã0£¼f¡ä£¨x£©£¼1¡±£®
£¨¢ñ£©ÅжϺ¯Êýf(x)=
x
2
+
sinx
4
ÊÇ·ñÊǼ¯ºÏMÖеÄÔªËØ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨¢ò£©¼¯ºÏMÖеÄÔªËØf£¨x£©¾ßÓÐÏÂÃæµÄÐÔÖÊ£ºÈôf£¨x£©µÄ¶¨ÒåÓòΪD£¬Ôò¶ÔÓÚÈÎÒâ[m£¬n]⊆D£¬¶¼´æÔÚx0¡Ê[m£¬n]£¬Ê¹µÃµÈʽf£¨n£©-f£¨m£©=£¨n-m£©f'£¨x0£©³ÉÁ¢¡±£¬ÊÔÓÃÕâÒ»ÐÔÖÊÖ¤Ã÷£º·½³Ìf£¨x£©-x=0Ö»ÓÐÒ»¸öʵÊý¸ù£»
£¨¢ó£©Éèx1ÊÇ·½³Ìf£¨x£©-x=0µÄʵÊý¸ù£¬ÇóÖ¤£º¶ÔÓÚf£¨x£©¶¨ÒåÓòÖÐÈÎÒâµÄx2¡¢x3£¬µ±|x2-x1|£¼1£¬ÇÒ|x3-x1|£¼1ʱ£¬|f£¨x3£©-f£¨x2£©|£¼2£®
·ÖÎö£º£¨1£©Åж¨º¯Êýf(x)=
x
2
+
sinx
4
ÊÇ·ñÂú×㣺¡°¢Ù·½³Ìf£¨x£©-x=0ÓÐʵÊý¸ù£»¢Úº¯Êýf£¨x£©µÄµ¼Êýf¡ä£¨x£©Âú×ã0£¼f¡ä£¨x£©£¼1£®¡±
£¨2£©Ö¤Ã÷Ö»ÓÐÒ»¸öµÄÎÊÌ⣬¿ÉÀûÓ÷´Õý·¨½øÐÐÖ¤Ã÷£¬¼ÙÉè·½³Ìf£¨x£©-x=0´æÔÚÁ½¸öʵÊý¸ù¦Á£¬¦Â£¨¦Á¡Ù¦Â£©£¬È»ºóÑ°ÕÒì¶Ü£¬´Ó¶ø¿Ï¶¨½áÂÛ£®
£¨3£©¹¹Ôìf£¨x£©-x£¬Ñо¿º¯Êýf£¨x£©-xµÄµ¥µ÷ÐÔ£¬´Ó¶øµÃµ½|f£¨x3£©-f£¨x2£©|£¼|x3-x2|£¬ÔÙÀûÓþø¶ÔÖµ²»µÈʽ¼´¿ÉÖ¤µÃ£®
½â´ð£º½â£º£¨I£©ÒòΪf¡ä(x)=
1
2
+
1
4
cosx£¬ËùÒÔf¡ä(x)¡Ê[
1
4
£¬
3
4
]Âú×ãÌõ¼þ0£¼f¡ä(x)£¼1
£¬
ÓÖÒòΪµ±x=0ʱ£¬f£¨0£©=0£¬
ËùÒÔ·½³Ìf£¨x£©-x=0ÓÐʵÊý¸ù0£®
ËùÒÔº¯Êýf(x)=
x
2
+
sinx
4
Êǵļ¯ºÏMÖеÄÔªËØ£®£¨3·Ö£©
£¨II£©¼ÙÉè·½³Ìf£¨x£©-x=0´æÔÚÁ½¸öʵÊý¸ù¦Á£¬¦Â£¨¦Á¡Ù¦Â£©£¬
Ôòf£¨¦Á£©-¦Á=0£¬f£¨¦Â£©-¦Â=0²»·ÁÉè¦Á£¼¦Â£¬¸ù¾ÝÌâÒâ´æÔÚÊýc⊆£¨¦Á£¬¦Â£©
ʹµÃµÈʽf£¨¦Â£©-f£¨¦Á£©=£¨¦Â-¦Á£©f'£¨c£©³ÉÁ¢£®
ÒòΪf£¨¦Á£©=¦Á£¬f£¨¦Â£©=¦Â£¬ÇÒ¦Á¡Ù¦Â£¬
ËùÒÔf'£¨c£©=1£¬
ÓëÒÑÖª0£¼f'£¨x£©£¼1ì¶Ü£¬
ËùÒÔ·½³Ìf£¨x£©-x=0Ö»ÓÐÒ»¸öʵÊý¸ù£»£¨8·Ö£©
£¨III£©²»·ÁÉèx2£¼x3£¬ÒòΪf'£¨x£©£¾0£¬
ËùÒÔf£¨x£©ÎªÔöº¯Êý£¬
ËùÒÔf£¨x2£©£¼f£¨x3£©£¬
ÓÖÒòΪf'£¨x£©-1£¼0£¬
ËùÒÔº¯Êýf£¨x£©-xΪ¼õº¯Êý£¬
ËùÒÔf£¨x2£©-x2£¾f£¨x3£©-x3£¬
ËùÒÔ0£¼f£¨x3£©-f£¨x2£©£¼x3-x2£¬
¼´|f£¨x3£©-f£¨x2£©|£¼|x3-x2|£¬
ËùÒÔ|f£¨x3£©-f£¨x2£©|£¼|x3-x2|=|x3-x1-£¨x2-x1£©|¡Ü|x3-x1|+|x2-x1|£¼2£¨13·Ö£©
µãÆÀ£º±¾Ì⿼²éÁ˵¼ÊýµÄÔËË㣬·´Ö¤·¨£¬ÒÔ¼°²»µÈʽµÄÖ¤Ã÷£¬ÊÇÒ»µÀº¯Êý×ÛºÏÎÊÌ⣬ÓÐÒ»¶¨ÄѶȣ¬¿É×÷Ϊ¿¼ÊÔµÄѹÖáÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèMÊÇÓÉÂú×ãÏÂÁÐÌõ¼þµÄº¯Êýf£¨x£©¹¹³ÉµÄ¼¯ºÏ£º¡°¢Ù·½³Ìf£¨x£©-x=0ÓÐʵÊý¸ù£»¢Úº¯Êýf£¨x£©µÄµ¼Êýf¡ä£¨x£©Âú×ã
0£¼f¡ä£¨x£©£¼1¡±
£¨I£©Ö¤Ã÷£ºº¯Êýf£¨x£©=
3x
4
+
x3
3
£¨0¡Üx£¼
1
2
£©ÊǼ¯ºÏMÖеÄÔªËØ£»
£¨II£©Ö¤Ã÷£ºº¯Êýf£¨x£©=
3x
4
+
x3
3
£¨0¡Üx£¼
1
2
£©¾ßÓÐÏÂÃæµÄÐÔÖÊ£º¶ÔÓÚÈÎÒâ[m£¬n]⊆[0£¬
1
2
£©£¬¶¼´æÔÚxo¡Ê£¨m£¬n£©£¬Ê¹µÃµÈʽf£¨n£©-f£¨m£©=£¨n-m£©f¡ä£¨xo£©³ÉÁ¢£®
£¨III£©Èô¼¯ºÏMÖеÄÔªËØf£¨x£©¾ßÓÐÏÂÃæµÄÐÔÖÊ£ºÈôf£¨x£©µÄ¶¨ÒåÓòΪD£¬Ôò¶ÔÓÚÈÎÒâ[m£¬n]⊆D£¬¶¼´æÔÚxo¡Ê£¨m£¬n£©£¬Ê¹µÃµÈʽf£¨n£©-f£¨m£©=£¨n-m£©f¡ä£¨xo£©³ÉÁ¢£®ÊÔÓÃÕâÒ»ÐÔÖÊÖ¤Ã÷£º¶Ô¼¯ºÏMÖеÄÈÎÒ»ÔªËØf£¨x£©£¬·½³Ìf£¨x£©-x=0Ö»ÓÐÒ»¸öʵÊý¸ù£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèMÊÇÓÉÂú×ãÏÂÁÐÌõ¼þµÄº¯Êýf£¨x£©¹¹³ÉµÄ¼¯ºÏ£º¡°¢Ù·½³Ìf£¨x£©-x=0ÓÐʵÊý¸ù£»¢Úº¯Êýf£¨x£©µÄµ¼Êýf¡ä£¨x£©Âú×ã0£¼f¡ä£¨x£©£¼1£®¡±
£¨¢ñ£©ÅжϺ¯Êýf(x)=
x
2
+
sinx
4
ÊÇ·ñÊǼ¯ºÏMÖеÄÔªËØ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨¢ò£©Áîg£¨x£©=f£¨x£©-x£¬ÅжÏg£¨x£©µÄµ¥µ÷ÐÔ£¨f£¨x£©¡ÊM£©£»
£¨¢ó£©Éèx1£¼x2£¬Ö¤Ã÷£º0£¼f£¨x2£©-f£¨x1£©£¼x2-x1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèMÊÇÓÉÂú×ãÏÂÁÐÌõ¼þµÄº¯Êýf£¨x£©¹¹³ÉµÄ¼¯ºÏ£º£¨1£©·½³Ìf£¨x£©-x=0ÓÐʵÊý½â£»£¨2£©º¯Êýf£¨x£©µÄµ¼Êýf¡ä£¨x£©Âú×ã0£¼f¡ä£¨x£©£¼1£®¸ø³öÈçϺ¯Êý£º
¢Ùf(x)=
x
2
+
sinx
4
£»
¢Úf£¨x£©=x+tanx£¬x¡Ê(-
¦Ð
2
£¬
¦Ð
2
)
£»
¢Ûf£¨x£©=log3x+1£¬x¡Ê[1£¬+¡Þ£©£®
ÆäÖÐÊǼ¯ºÏMÖеÄÔªËصÄÓÐ
¢Ù¢Û
¢Ù¢Û
£®£¨Ö»ÐèÌîдº¯ÊýµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•½­Î÷Ä£Ä⣩ÉèMÊÇÓÉÂú×ãÏÂÁÐÌõ¼þµÄº¯Êýf£¨x£©¹¹³ÉµÄ¼¯ºÏ£º¢Ù·½³Ìf£¨x£©-x=0ÓÐʵ¸ù£»¢Úº¯Êýf£¨x£©µÄµ¼Êýf¡ä£¨x£©Âú×ã0£¼f¡ä£¨x£©£¼1£®
£¨1£©Èôº¯Êýf£¨x£©Îª¼¯ºÏMÖеÄÈÎÒâÒ»¸öÔªËØ£¬Ö¤Ã÷£º·½³Ìf£¨x£©-x=0Ö»ÓÐÒ»¸öʵ¸ù£»
£¨2£©ÅжϺ¯Êýg£¨x£©=
x
2
-
lnx
2
+3(x£¾1)
ÊÇ·ñÊǼ¯ºÏMÖеÄÔªËØ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©É躯Êýf£¨x£©Îª¼¯ºÏMÖеÄÈÎÒâÒ»¸öÔªËØ£¬¶ÔÓÚ¶¨ÒåÓòÖÐÈÎÒâ¦Á£¬¦Â£¬Ö¤Ã÷|f£¨¦Á£©-f£¨¦Â£©|¡Ü|¦Á-¦Â|

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸