精英家教网 > 高中数学 > 题目详情
(2013•上海)已知函数f(x)=2sin(ωx),其中常数ω>0
(1)令ω=1,判断函数F(x)=f(x)+f(x+
π
2
)的奇偶性,并说明理由;
(2)令ω=2,将函数y=f(x)的图象向左平移个
π
6
单位,再向上平移1个单位,得到函数y=g(x)的图象,对任意a∈R,求y=g(x)在区间[a,a+10π]上零点个数的所有可能值.
分析:(1)特值法:ω=1时,写出f(x)、F(x),求出F(
π
4
)、F(-
π
4
),结合函数奇偶性的定义可作出正确判断;
(2)根据图象平移变换求出g(x),令g(x)=0可得g(x)可能的零点,而[a,a+10π]恰含10个周期,分a是零点,a不是零点两种情况讨论,结合图象可得g(x)在[a,a+10π]上零点个数的所有可能值;
解答:解:(1)f(x)=2sinx,
F(x)=f(x)+f(x+
π
2
)=2sinx+2sin(x+
π
2
)=2(sinx+cosx),
F(
π
4
)=2
2
,F(-
π
4
)=0,F(-
π
4
)≠F(
π
4
),F(-
π
4
)≠-F(
π
4
),
所以,F(x)既不是奇函数,也不是偶函数.
(2)f(x)=2sin2x,
将y=f(x)的图象向左平移
π
6
个单位,再向上平移1个单位后得到y=2sin2(x+
π
6
)+1的图象,所以g(x)=2sin2(x+
π
6
)+1.
令g(x)=0,得x=kπ+
5
12
π
或x=kπ+
3
4
π
(k∈z),
因为[a,a+10π]恰含10个周期,所以,当a是零点时,在[a,a+10π]上零点个数21,
当a不是零点时,a+kπ(k∈z)也都不是零点,区间[a+kπ,a+(k+1)π]上恰有两个零点,故在[a,a+10π]上有20个零点.
综上,y=g(x)在[a,a+10π]上零点个数的所有可能值为21或20.
点评:本题考查函数y=Asin(ωx+φ)的图象变换、函数的奇偶性、根的存在性及根的个数的判断,考查数形结合思想,结合图象分析是解决(2)问的关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•上海)已知圆柱Ω的母线长为l,底面半径为r,O是上底面圆心,A,B是下底面圆周上两个不同的点,BC是母线,如图,若直线OA与BC所成角的大小为
π
6
,则
l
r
=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知真命题:“函数y=f(x)的图象关于点P(a,b)成中心对称图形”的充要条件为“函数y=f(x+a)-b 是奇函数”.
(1)将函数g(x)=x3-3x2的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数g(x)图象对称中心的坐标;
(2)求函数h(x)=log2
2x4-x
 图象对称中心的坐标;
(3)已知命题:“函数 y=f(x)的图象关于某直线成轴对称图象”的充要条件为“存在实数a和b,使得函数y=f(x+a)-b 是偶函数”.判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知a,b,c∈R,“b2-4ac<0”是“函数f(x)=ax2+bx+c的图象恒在x轴上方”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知向量
a
=(1,k)
b
=(9,k-6)
.若
a
b
,则实数 k=
-
3
4
-
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知抛物线C:y2=4x 的焦点为F.
(1)点A,P满足
AP
=-2
FA
.当点A在抛物线C上运动时,求动点P的轨迹方程;
(2)在x轴上是否存在点Q,使得点Q关于直线y=2x的对称点在抛物线C上?如果存在,求所有满足条件的点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案