阅读下面材料:
根据两角和与差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ——①
sin(α-β)=sinαcosβ-cosαsinβ——②
由①+②得
sin(α+β)+sin(α-β)=2sinαcosβ——③
令α+β=A,α-β=B有α=
,β=![]()
代入③得
sinA+sinB=2sin
cos
.
(Ⅰ)类比上述推证方法,根据两角和与差的余弦公式,证明:
cosA-cosB=-2sin
sin
;
(Ⅱ)若△ABC的三个内角A,B,C满足cos2A-cos2B=2sin2C,试判断△ABC的形状.(提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)
科目:高中数学 来源: 题型:阅读理解
| A+B |
| 2 |
| A-B |
| 2 |
| A+B |
| 2 |
| A-B |
| 2 |
| A+B |
| 2 |
| A-B |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:阅读理解
| A+B |
| 2 |
| A-B |
| 2 |
| A+B |
| 2 |
| A-B |
| 2 |
| A+B |
| 2 |
| A-B |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:阅读理解
| A+B |
| 2 |
| A-B |
| 2 |
| A+B |
| 2 |
| A-B |
| 2 |
| A+B |
| 2 |
| A-B |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:阅读理解
| A+B |
| 2 |
| A-B |
| 2 |
| A+B |
| 2 |
| A-B |
| 2 |
| A+B |
| 2 |
| A-B |
| 2 |
查看答案和解析>>
科目:高中数学 来源:2013届江苏姜堰市高二第二学期期中理科数学试卷(解析版) 题型:解答题
阅读下面材料:
根据两角和与差的正弦公式,有
------①
------②
由①+② 得
------③
令
有![]()
代入③得
.
(1) 类比上述推理方法,根据两角和与差的余弦公式,证明:
;
(2)若
的三个内角
满足
,直接利用阅读材料及(1)中的结论试判断
的形状.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com