精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=(x2-4)(x-a),a∈R,且f′(-1)=0.
(1)讨论函数f(x)的单调性;
(2)求函数f(x)在[-2,2]上的最大值和最小值.

分析 (1)利用导数的运算法则可得f′(x)=2x(x-a)+x2-4=3x2-2ax-4.再利用f′(-1)=0,即可解得a.然后根据函数单调性和导数之间的关系进行求解和判断即可.
(2)由(1)可得:f(x)=x3-$\frac{1}{2}{x}^{2}-4x+2$.x∈[-2,2].令f′(x)=0,解得x=-1,$\frac{4}{3}$.列出表格,利用导数研究函数的单调性极值与区间端点出的函数值,即可得出最值.

解答 解:(1)函数f(x)=(x2-4)(x-a)(a∈R),
∴f′(x)=2x(x-a)+x2-4=3x2-2ax-4.
∵f′(-1)=0,∴3+2a-4=0,解得a=$\frac{1}{2}$,
∴a=$\frac{1}{2}$;
则$f(x)=({x}^{2}-4)(x-\frac{1}{2})$=x3-$\frac{1}{2}{x}^{2}-4x+2$.x∈[-2,2].
f′(x)=3x2-x-4=(3x-4)(x+1).
令f′(x)=0,解得x=-1,$\frac{4}{3}$.
由f′(x)>0得x>$\frac{4}{3}$或x<-1,此时函数单调递增,
由f′(x)<0得-1<x<$\frac{4}{3}$.此时函数单调递减,
即函数的单调递增区间为(-∞,-1],[$\frac{4}{3}$,+∞),单调递减区间为[-1,$\frac{4}{3}$].
(2)当-2≤x≤2时,函数f(x)与f′(x)的变化如图下表:

 x[-2,-1)-1 $(-1,\frac{4}{3})$ $\frac{4}{3}$$(\frac{4}{3},2]$
 f′(x)+ 0- 0 
 f(x) 单调递增 极大值 单调递减 极小值 单调递增
由表格可知:当x=-1时,函数f(x)取得极大值,f(-1)=$\frac{9}{2}$;
当x=$\frac{4}{3}$时,函数f(x)取得极小值,$f(\frac{4}{3})$=$-\frac{50}{27}$;
又f(-2)=0,f(2)=0.
可知:函数f(x)的最大值为$\frac{9}{2}$,最小值为$-\frac{50}{27}$.

点评 本题考查了利用导数研究函数的单调性单调性,极值与最值,考查了推理能力和计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设等差数列{an}满足a3=5,a10=-9.则{an}的前n项和Sn取得最大值是(  )
A.23B.25C.27D.29

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2016(x)=(  )
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为选拔选手参加“中国谜语大全”,某中学举行一次“谜语大赛”活动,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分去正整数,满分为100分)作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100)的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在[50,60),[90,100)的数据).
(Ⅰ)求样本容量n和频率分布直方图中x,y的值;
(Ⅱ)分数在[80,90)的学生中,男生有2人,现从该组抽取三人“座谈”,写出基本事件空间并求至少有两名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}是公差d不为0的等差数列,a1=2,Sn为其前n项和.
(1)当a3=6时,若a1,a3,a${\;}_{{n}_{1}}$,a${\;}_{{n}_{2}}$…,a${\;}_{{n}_{k}}$成等比数列(其中3<n1<n2<…<nk),求nk的表达式;
(2)是否存在合适的公差d,使得{an}的任意前3n项中,前n项的和与后n项的和的比值等于定常数?求出d,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不等式$\frac{2x}{x+1}≤1$的解集为(-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知p:a2>a,q:a<0,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)是定义在R上且周期为6的奇函数,当x∈(0,3)时,f(x)=lg(2x2-x+m).若函数f(x)在区间[-3,3]上有且仅有5个零点(互不相同),则实数m的取值范围是$(\frac{1}{8},1]∪\{\frac{9}{8}\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知抛物线 y2=2px(p>0)的焦点为F,过点F的直线l交抛物线于A,B两点,若A(3,y0)且|AF|=4,则△OAB的面积为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{4\sqrt{3}}}{3}$C.$\frac{{5\sqrt{3}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案