精英家教网 > 高中数学 > 题目详情
20.已知p:a2>a,q:a<0,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据充分条件和必要条件的定义进行判断即可.

解答 解:由a2>a得a>1或a<0,
则p是q的必要不充分条件,
故选:B.

点评 本题主要考查充分条件和必要条件的判断,根据不等式的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(-6,3),则2$\overrightarrow{a}$+$\overrightarrow{b}$=(  )
A.(-2,1)B.(-4,6)C.(-4,-2)D.(10,-5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,b=5,c=5$\sqrt{3}$,A=30°,则a等于(  )
A.5B.4C.3D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=(x2-4)(x-a),a∈R,且f′(-1)=0.
(1)讨论函数f(x)的单调性;
(2)求函数f(x)在[-2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数$y={({\frac{1}{2}})^{|x|}}$的单调递增区间为(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.全国大学生数学建模竞赛创办与1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛,参赛者以3名大学生组成一队,通过学校教务部分向所在赛区组委会报名,再由赛区组委会向全国组委会报名,某高校从报名参加竞赛的4名男生和2名女生中随机选三人组成一队代表该校参加竞赛.
(1)列出该校参加竞赛组队的所有可能情况;
(2)求只有一名女生入选的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.(理科做)如图,在三棱锥P-ABC中,已知PA⊥平面ABC,∠BAC=$\frac{π}{2}$,PA=AB=AC,E,F分别为棱PB,PC的中点,则异面直线AF与CE所成的角的余弦值为$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数$f(x)=\frac{1}{3}{x^3}+a{x^2}-x$(a∈R),若y=f(x)在区间[-2,-1]上是单调减函数,则实数a的最小值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在平面直角坐标系xOy中,圆M的方程为x2+y2-8x-2y+16=0,若直线kx-y+3=0上至少存在一点,使得以该点为圆心,半径为1的圆与圆M有公共点,则k的取值范围是(  )
A.(-∞,$\frac{4}{3}$]B.[0,+∞)C.[-$\frac{4}{3}$,0]D.(-∞,$\frac{4}{3}$]∪[0,+∞)

查看答案和解析>>

同步练习册答案