精英家教网 > 高中数学 > 题目详情
5.全国大学生数学建模竞赛创办与1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛,参赛者以3名大学生组成一队,通过学校教务部分向所在赛区组委会报名,再由赛区组委会向全国组委会报名,某高校从报名参加竞赛的4名男生和2名女生中随机选三人组成一队代表该校参加竞赛.
(1)列出该校参加竞赛组队的所有可能情况;
(2)求只有一名女生入选的概率是多少?

分析 (1)设两名女生编号为A、B,男生编号为1、2、3、4,利用列举法能求出所有组队情况.
(2)利用列举法能求出只有一名女生入选的概率.

解答 解:(1)设两名女生编号为A、B,男生编号为1、2、3、4
则所有组队情况列基本事件如下:
(A,B,1)、(A,B,2)、(A,B,3)、(A,B,4)、(A,1,2)、
(A,1,3)、(A,1,4)、(A,2,3)、(A,2,4)、(A,3,4)、
(B,1,2)、(B,1,3)、(B,1,4)、(B,2,3)、(B,2,4)、
(B,3,4)、(1,2,3)、(1,2,4)、(1,3,4)、(2,3,4)
共20个.(8分)
(2)由(1)可知“只有一名女生入选”的基本事件共有12个
所以只有一名女生入选的概率是$\frac{12}{20}=\frac{3}{5}$.(12分)

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3+x.
(1)判断函数f(x)的单调性与奇偶性,(不用证明结论).
(2)若f(cosθ-m)+f(msinθ-2)<0对θ∈R恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为选拔选手参加“中国谜语大全”,某中学举行一次“谜语大赛”活动,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分去正整数,满分为100分)作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100)的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在[50,60),[90,100)的数据).
(Ⅰ)求样本容量n和频率分布直方图中x,y的值;
(Ⅱ)分数在[80,90)的学生中,男生有2人,现从该组抽取三人“座谈”,写出基本事件空间并求至少有两名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不等式$\frac{2x}{x+1}≤1$的解集为(-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知p:a2>a,q:a<0,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若两条直线x+ay+3=0,(a-1)x+2y+a+1=0互相平行,则这两条直线之间的距离为$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)是定义在R上且周期为6的奇函数,当x∈(0,3)时,f(x)=lg(2x2-x+m).若函数f(x)在区间[-3,3]上有且仅有5个零点(互不相同),则实数m的取值范围是$(\frac{1}{8},1]∪\{\frac{9}{8}\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=ax3-bsinx-3,a,b∈R,若f(-2)=-4,则f(2)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.现有60人,将其从1~60进行编号,若用系统抽样方法从中抽取6人参加某项活动,则所抽到的编号可能是(  )
A.1,2,4,8,16,32B.3,18,23,38,43,58
C.5,10,15,20,25,30D.7,17,27,37,47,57

查看答案和解析>>

同步练习册答案