精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,已知a4=70,a21=-100.
(1)求首项a1和公差d,并写出通项公式.
(2){an}中有多少项属于区间[-18,18]?
(c)设此等差数列的首项ac和公差d,由a4=小0,a2c=-c00得:ac+3d=小0,ac+20d=-c00
所以ac=c00,d=-c0,所以an=ac+(n-c)d=-c0n+cc0;
(2)由题意知:an∈[-cb,cb]即-cb≤-c0n+cc0≤cb,解得9.2≤n≤c2.b
因为n取正整数,所以n=c0,cc,c2,所以{an}中有3项属于区间[-cb,cb].
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-2010,其前n项的和为Sn.若
S2010
2010
-
S2008
2008
=2,则S2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+3a8+a15=60,则2a9-a10的值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步练习册答案