精英家教网 > 高中数学 > 题目详情
已知如图是函数f(x)=Asin(x+)(A>0,>0)的部分图象.
(1)求函数解析式;
(2)当x∈R时,求该函数图象的对称轴方程和对称中心坐标;
(3)当x∈R时,写出f(x)的单调增区间;
(4)当x∈R时,求使f(x)≥1 成立的x 的取值集合;
(5)当x∈[],求f(x)的值域.
解:(1)由图象可得:A=2,T=2()==
=2
=
=
所以f(x)=2sin(2x+
(2)由2x+=k+,k∈Z得其对称轴方程为:x=+,k∈Z;
对称中心坐标为:(,);
(3)由2k≤2x+≤2k+,k∈Z得:k≤x≤k+,k∈Z
所以f(x)的增区间是[k,k+],(k∈Z)
(4)由f(x)≥1得2sin(2x+)≥1,
∴sin(2x+)≥
所以,2k+≤2x+≤2k+,k∈Z,解得:k≤x≤k+,k∈Z,
∴f(x)≥1 成立的x 的取值集合为{x|k≤x≤k+,k∈Z}
(5)∵x∈[],
∴2x+∈[].
当2x+=,即x=时,f(x)取得最大值2;
当2x+=,即x=时,f(x)取得最小值﹣1,
故f(x)的值域为[﹣1,2].
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象
(1)求函数解析式,写出f(x)的单调减区间
(2)当x∈[
π
12
π
2
],求f(x)的值域.
(3)当x∈R时,求使f(x)≥1 成立的x 的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象.
(1)求函数解析式;
(2)当x∈R时,求该函数图象的对称轴方程和对称中心坐标;
(3)当x∈R时,写出f(x)的单调增区间;
(4)当x∈R时,求使f(x)≥1 成立的x 的取值集合;
(5)当x∈[
π
12
π
2
],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年新疆巴州尉犁中学高三(上)第二次月考数学试卷(解析版) 题型:解答题

已知如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象
(1)求函数解析式,写出f(x)的单调减区间
(2)当x∈[],求f(x)的值域.
(3)当x∈R时,求使f(x)≥1 成立的x 的取值集合.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年新疆乌鲁木齐一中高三(上)第一次月考数学试卷(文科)(解析版) 题型:解答题

已知如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象.
(1)求函数解析式;
(2)当x∈R时,求该函数图象的对称轴方程和对称中心坐标;
(3)当x∈R时,写出f(x)的单调增区间;
(4)当x∈R时,求使f(x)≥1 成立的x 的取值集合;
(5)当x∈[],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年新疆乌鲁木齐一中高三(上)第一次月考数学试卷(文科)(解析版) 题型:解答题

已知如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象.
(1)求函数解析式;
(2)当x∈R时,求该函数图象的对称轴方程和对称中心坐标;
(3)当x∈R时,写出f(x)的单调增区间;
(4)当x∈R时,求使f(x)≥1 成立的x 的取值集合;
(5)当x∈[],求f(x)的值域.

查看答案和解析>>

同步练习册答案