精英家教网 > 高中数学 > 题目详情
设函数,其中的导函数.

(1)求的表达式;
(2)若恒成立,求实数的取值范围;
(3)设,比较的大小,并加以证明.
(1);(2);(3),证明见解析.

试题分析:(1)易得,且有,当且仅当时取等号,当时,,当,由,得,所以数列是以为首项,以1为公差的等差数列,继而得,经检验,所以
范围内恒成立,等价于成立,令 ,即成立,,令,得,分两种情况讨论,分别求出的最小值,继而求出的取值范围;
(3)由题设知:,比较结果为:,证明如下:上述不等式等价于
在(2)中取,可得,令,则,即,使用累加法即可证明结论.
试题解析:
(1)
,即,当且仅当时取等号
时,


,即
数列是以为首项,以1为公差的等差数列


时,

(2)在范围内恒成立,等价于成立
,即恒成立,

,即,得
时,上单调递增

所以当时,恒成立;
时,上单调递增,在上单调递减,
所以


因为,所以,即,所以函数上单调递减
所以,即
所以不恒成立
综上所述,实数的取值范围为
(3)由题设知:

比较结果为:
证明如下:
上述不等式等价于
在(2)中取,可得
,则,即
故有


上述各式相加可得:
结论得证.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=(m,n∈R)在x=1处取得极大值2.
(1)求函数f(x)的解析式;
(2)求函数f(x)的极值;
(3)设函数g(x)=x2-2ax+a,若对于任意x2∈[-1,1],总存在x1∈R,使得g(x2)≤f(x1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=alnx+bx,且f(1)= -1,f′(1)=0,
(1)求f(x);
(2)求f(x)的最大值;
(3)x>0,y>0,证明:lnx+lny≤.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求证:
(2)若恒成立,求的最大值与的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一物体的运动方程为,其中s的单位是米,t的单位是秒,那么物体在4秒末的瞬时速度是(   )
A.8米/秒B.7米/秒C.6米/秒D.5米/秒

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的导函数为偶函数,且曲线在点处的切线的斜率为.
(1)确定的值;
(2)若,判断的单调性;
(3)若有极值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则等于     (    )
A.-2B.-4C.2D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若曲线处的切线平行于直线的坐标是_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数,则等于(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案