精英家教网 > 高中数学 > 题目详情
(2013•广州二模)已知0<a<1,0<x≤y<1,且logax.logay=1,那么xy的取值范围为(  )
分析:由已知0<a<1,0<x≤y<1,利用对数函数的单调性可得logax>0,logay>0,再利用基本不等式的性质logax+logay=loga(xy)≥2
logax•logay
即可得出
解答:解:∵0<a<1,0<x≤y<1,∴logax>0,logay>0,
∴logax+logay=loga(xy)≥2
logax•logay
=2,当且仅当logax=logay=1时取等号.
∴0<xy≤a2
故选A.
点评:熟练掌握对数函数的单调性、基本不等式的性质是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•广州二模)如果函数f(x)=ln(-2x+a)的定义域为(-∞,1),则实数a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州二模)(几何证明选讲选做题)
在△BC中,D是边AC的中点,点E在线段BD上,且满足BE=
1
3
BD,延长AE交 BC于点F,则
BF
FC
的值为
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州二模)直线y=k(x+1)与圆(x+1)2+y2=1相交于A,B两点,则|AB|的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州二模)在等差数列{an}中,a1+a2=5,a3=7,记数列{
1anan+1
}的前n项和为Sn
(1)求数列{an}的通项公式;
(2)是否存在正整数m、n,且1<m<n,使得S1、SntSn成等比数列?若存在,求出所有符合条件的m,n值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州二模)设an是函数f(x)=x3+n2x-1(n∈N+)的零点.
(1)证明:0<an<1;
(2)证明:
n
n+1
a1+a2+…+an
3
2

查看答案和解析>>

同步练习册答案