精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log2(x+a)+1过点(4,4).
(1)求实数a;
(2)将函数f(x)的图象向下平移1个单位,再向右平移a个单位后得到函数g(x)图象,设函数g(x)关于y轴对称的函数为h(x),试求h(x)的解析式;
(3)对于定义在(-4,0)上的函数y=h(x),若在其定义域内,不等式[h(x)+2]2>h(x)m-1恒成立,求实数m的取值范围.
分析:(1)由已知可得,log2(4+a)+1=4,由此求得a的值.
(2)由(1)可得f(x)=log2(x+4)+1,再根据函数图象的平移变换规律求得,函数g(x)的解析式,
再根据函数g(x)关于y轴对称的函数为h(x),求得h(x)的解析式.
(3)由题意可得(log2(-x)+2)2>mlog2(-x)-1在(-4,0)恒成立,设t=log2(-x),则t<2,t2+(4-m)t+5>0,在t<2时恒成立.令g(t)=t2+(4-m)t+5,则
m-2
2
≤2
△=(4-m)2-20<0
,或
m-2
2
>2
g(2)=17-2m≥0
,分别求得这2个不等式组的解集,再取并集,即得所求.
解答:解:(1)由已知可得,log2(4+a)+1=4,解得 a=4.
(2)由(1)可得f(x)=log2(x+4)+1,向下平移1个单位后再向右平移4个单位后,
得到函数g(x)=log2x.
由于函数g(x)关于y轴对称的函数为h(x),
∴h(x)=log2(-x)(x<0).
(3)∵(log2(-x)+2)2>mlog2(-x)-1在(-4,0)恒成立,
∴设t=log2(-x)(-4<x<0),则t<2,
∴(t+2)2>tm-1,即:t2+(4-m)t+5>0,在t<2时恒成立.
令g(t)=t2+(4-m)t+5,
m-2
2
≤2
△=(4-m)2-20<0
,或
m-2
2
>2
g(2)=17-2m≥0

解得 4-2
5
<m≤6,或8<m≤
17
2

综合得:4-2
5
<m≤
17
2
点评:本题主要考查函数的图象的平移变换规律,函数的恒成立问题,二次函数的性质应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案