精英家教网 > 高中数学 > 题目详情

【题目】如图所示,⊙O与⊙O′相交于AB两点,过A引直线CDEF分别交两圆于点CDEFECDF的延长线相交于点P,求证:∠P+∠CBD=180°.

【答案】见解析

【解析】试题分析:所对的圆周角相等,得到∠E=∠CBA. 又四边形ABDF内接于⊙O′,所以∠PFA=∠ABD,所以∠E+∠PFE=∠CBA+∠ABD=∠CBD.又因为∠E+∠P+∠PFE=180°,所以∠P+∠CBD=180°.

试题解析:

证明:如图所示,连接AB,因为∠E与∠CBA是圆O所对的圆周角,

所以∠E=∠CBA.

又四边形ABDF内接于⊙O′,

所以∠PFA=∠ABD

所以∠E+∠PFE=∠CBA+∠ABD=∠CBD.

又因为∠E+∠P+∠PFE=180°,

所以∠P+∠CBD=180°.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设多个分支机构,需要国内公司外派大量后、后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从后和后的员工中随机调查了位,得到数据如下表:

愿意被外派

不愿意被外派

合计

合计

/p>

(Ⅰ)根据调查的数据,是否有以上的把握认为“是否愿意被外派与年龄有关”,并说明理由;

(Ⅱ)该公司举行参观驻海外分支机构的交流体验活动,拟安排名参与调查的后、后员工参加.后员工中有愿意被外派的人和不愿意被外派的人报名参加,从中随机选出人,记选到愿意被外派的人数为后员工中有愿意被外派的人和不愿意被外派的人报名参加,从中随机选出人,记选到愿意被外派的人数为,求的概率

参考数据:

(参考公式:,其中).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形, 垂直于底面 分别为 的中点.

(Ⅰ)求证:

(Ⅱ)求四棱锥的体积和截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心坐标,直线被圆截得弦长为

(Ⅰ)求圆的方程;

(Ⅱ)从圆外一点向圆引切线,求切线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.

年龄(单位:岁)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;

年龄不低于45岁的人数

年龄低于45岁的人数

合计

赞成

不赞成

合计

(Ⅱ)若从年龄在[25,35)和[55,65)的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在[55,65)的概率.

参考数据如下:

附临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的观测值: (其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)同时满足:(ⅰ)对于定义域内的任意x,恒有f(x)+f(﹣x)=0;(ⅱ)对于定义域内的任意x1 , x2 , 当x1≠x2时,恒有 , 则称函数f(x)为“二维函数”.现给出下列四个函数:
①f(x)=
②f(x)=﹣x3+x


其中能被称为“二维函数”的有 (写出所有满足条件的函数的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取40名中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段: ,…, ,得到如图所示的频率分布直方图.

(1)求图中实数的值;

(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;

(3)若从数学成绩在两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左焦点,若椭圆上存在一点,满足以椭圆短轴为直径的圆与线段相切于线段的中点.

(1)求椭圆的方程;

(2)过坐标原点的直线交椭圆 两点,其中点在第一象限,过轴的垂线,垂足为,连结并延长交椭圆,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 和点,动圆经过点且与圆相切,圆心的轨迹为曲线

(1)求曲线的方程;

(2)点是曲线轴正半轴的交点,点 在曲线上,若直线 的斜率分别是 ,满足,求面积的最大值.

查看答案和解析>>

同步练习册答案