精英家教网 > 高中数学 > 题目详情

【题目】某校从高一年级学生中随机抽取40名中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段: ,…, ,得到如图所示的频率分布直方图.

(1)求图中实数的值;

(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;

(3)若从数学成绩在两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.

【答案】(1) ;(2) 高一年级数学成绩不低于60分的人数约为人;(3) 这两名学生的数学成绩之差的绝对值不大于10的概率为.

【解析】试题分析:(1)根据图中所有小矩形的面积之和等于1建立关于a的等式,解之即可求出所求;
(2)根据频率分布直方图,成绩不低于60分的频率,然后根据频数=频率×总数可求出所求;
(3)成绩在[40,50)分数段内的人数,以及成绩在[90,100]分数段内的人数,列出所有的基本事件,以及两名学生的数学成绩之差的绝对值不大于10的基本事件,最后利用古典概型的概率公式解之即可.

试题解析:

(1)由于图中所有小矩形的面积之和等于1,所以10×(0.005+0.01+0.02+a+0.025+0.01)=1.

解得a=0.03

(2)根据频率分布直方图,成绩不低于60分的频率为110×(0.005+0.01)=0.85由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级数学成绩不低于60分的人数约为640×0.85=544人

(3)成绩在[40,50)分数段内的人数为40×0.05=2人,分别记为A,B,成绩在[90,100]分数段内的人数为40×0.1=4人,分别记为C,D,E,F.

若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共15种.…(9分)

如果两名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这两名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这两名学生的数学成绩之差的绝对值一定大于10.

记“这两名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共7种.所以所求概率为P(M)= .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a,b,c为△ABC的三个内角A,B,C的对边,向量=( , ﹣1),=(cosA,sinA).若 , 且αcosB+bcosA=csinC,则角A,B的大小分别为(  )
A.,
B.,
C.,
D.,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列为等比数列, ,公比,且成等差数列.

1求数列的通项公式;

2 ,求使的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在⊙O中,相交于点E的两弦ABCD的中点分别是MN,直线MO与直线CD相交于点F.

证明:(1)∠MEN+∠NOM=180°;

(2)FE·FNFM·FO.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为,对给定的正数,若存在闭区间,使得函数满足:①内是单调函数;②上的值域为,则称区间级“理想区间”.下列结论错误的是( )

A. 函数)存在1级“理想区间”

B. 函数)不存在2级“理想区间”

C. 函数)存在3级“理想区间”

D. 函数 不存在4级“理想区间”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和,且的等差中项,等差数列满足.

(1)求数列的通项公式;

(2)设,数列的前项和为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分,1小问7分,2小问5分

设函数

1处取得极值,确定的值,并求此时曲线在点处的切线方程;

2上为减函数,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:在四棱锥中, 平面,底面是正方形, .

(1)求异面直线所成角的大小(结果用反三角函数值表示);

(2)求点分别是棱的中点,求证: 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,二次函数的图象与轴交于 两点,点的坐标为.当变化时,解答下列问题:

(1)以为直径的圆能否经过点?说明理由;

(2)过 三点的圆在轴上截得的弦长是否为定值?若是,则求出该定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案