精英家教网 > 高中数学 > 题目详情

【题目】已知数列为等比数列, ,公比,且成等差数列.

1求数列的通项公式;

2 ,求使的值.

【答案】(1);(2).

【解析】试题分析:(1)成等差数列,知,由为等比数列,且,故,由此能求出数列的通项公式;(2)由,知,由此利用裂项求和法能够求出由的取值.

试题解析:(1)由成等差数列,得

又为等比数列,且

,解得

(2)

故由,可得.

【方法点晴】本题主要考查等比数列的通项公式基本量运算,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的项技巧:(1) ;(2) ; (3);(4) ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面四边形是矩形,平面分别是的中点,.

(1)求证:平面

(2)求二面角的大小;

(3)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科研机构研发了某种高新科技产品,现已进入实验阶段.已知实验的启动资金为10万元,从实验的第一天起连续实验,第天的实验需投入实验费用为,实验30天共投入实验费用17700元.

(1)求的值及平均每天耗资最少时实验的天数;

(2)现有某知名企业对该项实验进行赞助,实验天共赞助.为了保证产品质量,至少需进行50天实验,若要求在平均每天实际耗资最小时结束实验,求的取值范围.(实际耗资=启动资金+试验费用-赞助费)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
(1)求证:平面ABC1⊥平面A1ACC1
(2)设D是线段BB1的中点,求三棱锥D﹣ABC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0
(1)求证:f(x)是奇函数;
(2)若 , 试求f(x)在区间[﹣2,6]上的最值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为 为参数),在以为极点, 轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点.

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)若点 在曲线上,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,且),(其中的导函数).

(Ⅰ)当时,求的极大值点;

(Ⅱ)讨论的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取40名中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段: ,…, ,得到如图所示的频率分布直方图.

(1)求图中实数的值;

(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;

(3)若从数学成绩在两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为

求曲线的直角坐标方程,并指出其表示何种曲线;

设直线与曲线交于两点,若点的直角坐标为

试求当时, 的值.

查看答案和解析>>

同步练习册答案