精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xOy中,已知椭圆数学公式(a>b>0)的离心率为数学公式,其焦点在圆x2+y2=1上.
(1)求椭圆的方程;
(2)设A,B,M是椭圆上的三点(异于椭圆顶点),且存在锐角θ,使数学公式
(i)求证:直线OA与OB的斜率之积为定值;
(ii)求OA2+OB2

解:(1)依题意,得  c=1.于是,a=,b=1

所以所求椭圆的方程为

(2)(i)设A(x1,y1),B(x2,y2),
①,②.
又设M(x,y),因,故

因M在椭圆上,故
整理得
将①②代入上式,并注意cosθsinθ≠0,得  
所以,为定值

(ii),故y12+y22=1.
,故x12+x22=2.
所以,OA2+OB2=x12+y12+x22+y22=3


分析:(1)由已知中椭圆的离心率为,其焦点在圆x2+y2=1上我们可以求出a,b,c的值,进而得到椭圆的方程;
(2)(i)设A(x1,y1),B(x2,y2),M(x,y),由.可得x,y的坐标表达式,进而根据M在椭圆上,可得为定值.
(ii)由(i)中结论,可得y12+y22=1,及x12+x22=2,进而得到OA2+OB2
点评:本题主要考查圆、椭圆及直线的基础知识,考查运算能力及探究能力.第(2)问中,可以证明线段AB的中点恒在定椭圆x2+2y2=1上.后一问与前一问之间具有等价关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x-2y=0,则它的离心率为(  )
A、
5
B、
5
2
C、
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l的参数方程为
x=2t-1 
y=4-2t .
(参数t∈R),以直角坐标原点为极点,x轴的正半轴为极轴建立相应的极坐标系.在此极坐标系中,若圆C的极坐标方程为ρ=4cosθ,则圆心C到直线l的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程) 在平面直角坐标系xOy中,圆C的参数方程为
x=2cosθ
y=2sinθ+2
 (参数θ∈[0,2π)),若以原点为极点,射线ox为极轴建立极坐标系,则圆C的圆心的极坐标为
 
,圆C的极坐标方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东)在平面直角坐标系xOy中,直线3x+4y-5=0与圆x2+y2=4相交于A、B两点,则弦AB的长等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.
(Ⅰ)若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,求sin(α+β)的值;
(Ⅱ) 若|AB|=
3
2
,求
OA
OB
的值.

查看答案和解析>>

同步练习册答案