精英家教网 > 高中数学 > 题目详情
精英家教网如图,AB是⊙O的一条切线,切点为B,ADE,CFD,CGE都是⊙O的割线,已知AC=AB.
(1)证明:AD•AE=AC2
(2)证明:FG∥AC.
分析:(1)利用切线长与割线长的关系及AB=AC进行证明.
(2)利用成比例的线段证明角相等、三角形相似,得到同位角角相等,从而两直线平行.
解答:精英家教网证明:(1)∵AB是⊙O的一条切线,切点为B,ADE,CFD,CGE都是⊙O的割线,
∴AB2=AD•AE,
∵AB=AC,
∴AD•AE=AC2

(2)由(1)有
AD
AC
=
AC
AE
,∵∠EAC=∠DAC,
∴△ADC∽△ACE,
∴∠ADC=∠ACE,
∵∠ADC=∠EGF,
∴∠EGF=∠ACE,
∴FG∥AC.
点评:本题考查圆的切线、割线长的关系,平面的基本性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,AB是⊙O的一条弦,OD⊥AB于点C,交⊙O于点D,点E在⊙O上,∠AED=25°,则∠OBA的度数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲.
如图,AB是⊙O的一条切线,切点为B,ADE、CFD、CGE都是⊙O的割线,已知AC=AB.证明:
(1)AD•AE=AC2
(2)FG∥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州一模)选修4-1:几何证明选讲
如图,AB是⊙O的一条切线,切点为B,直线ADE,CFD,CGE都是⊙O的割线,已知AC=AB.
求证:FG∥AC.

查看答案和解析>>

科目:高中数学 来源:2013年江苏省苏北三市高考数学一模试卷(宿迁、徐州、淮安)(解析版) 题型:解答题

选修4-1:几何证明选讲
如图,AB是⊙O的一条切线,切点为B,直线ADE,CFD,CGE都是⊙O的割线,已知AC=AB.
求证:FG∥AC.

查看答案和解析>>

同步练习册答案