精英家教网 > 高中数学 > 题目详情
精英家教网如图,AB是⊙O的一条弦,OD⊥AB于点C,交⊙O于点D,点E在⊙O上,∠AED=25°,则∠OBA的度数是
 
分析:连接OA,由圆周角定理可得∠AOB=2∠AED,再由三角形内角和定理及等腰三角形的性质即可求出∠OBA的度数.
解答:解:连接OA,精英家教网
∵∠AED=25°,
∴∠AOD=50°,
∵OA=OB,OC⊥AB,
∴∠AOB=2∠AOD=2×50°=100°,
∴∠OAB=∠OBA=
180°-∠AOB
2
=
180°-100°
2
=40°.
故答案为:40°.
点评:本题考查的是圆周角定理及等腰三角形的性质,解答此题的关键是连接OA,构造出等腰三角形及圆心角,找出已知角与所求角的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,AB是⊙O的一条切线,切点为B,ADE,CFD,CGE都是⊙O的割线,已知AC=AB.
(1)证明:AD•AE=AC2
(2)证明:FG∥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲.
如图,AB是⊙O的一条切线,切点为B,ADE、CFD、CGE都是⊙O的割线,已知AC=AB.证明:
(1)AD•AE=AC2
(2)FG∥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州一模)选修4-1:几何证明选讲
如图,AB是⊙O的一条切线,切点为B,直线ADE,CFD,CGE都是⊙O的割线,已知AC=AB.
求证:FG∥AC.

查看答案和解析>>

科目:高中数学 来源:2013年江苏省苏北三市高考数学一模试卷(宿迁、徐州、淮安)(解析版) 题型:解答题

选修4-1:几何证明选讲
如图,AB是⊙O的一条切线,切点为B,直线ADE,CFD,CGE都是⊙O的割线,已知AC=AB.
求证:FG∥AC.

查看答案和解析>>

同步练习册答案