精英家教网 > 高中数学 > 题目详情
4.若直线y=kx+2与圆(x-2)2+(y-3)2=1有两个不同的交点,则实数k的取值范围是(  )
A.(0,$\frac{3}{4}$)B.[0,$\frac{3}{4}$]C.(0,$\frac{4}{3}$)D.[0,$\frac{4}{3}$]

分析 根据直线与圆有两个不同的交点,得到直线与圆相交,即圆心到直线的距离d小于r,利用点到直线的距离公式列出关于k的不等式,求出不等式的解集即可得到k的范围.

解答 解:∵直线与圆有两个不同的交点,
∴直线与圆相交,即圆心到直线的距离d<r,
∴$\frac{|2k-3+2|}{\sqrt{{k}^{2}+1}}$<1,
解得:0<k<$\frac{4}{3}$,
故选:C.

点评 此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,点到直线的距离公式,直线与圆的位置关系由d与r的大小来判断,当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.$\root{3}{\frac{2}{3}}$+2-$\root{3}{(-\frac{2}{3})}$=2($\root{3}{\frac{2}{3}}$+1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的实轴长,虚轴长,焦距依次成等差数列,则该双曲线的渐近线方程为y=±$\frac{4}{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若(2x+1)2+(2x+1)3+…+(2x+1)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a2的值为(  )
A.25B.50C.100D.200

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在数列{an}中,a1=1,an=an-1+4n(n≥2),求an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=loga(ax-3)在[1,3]上单调递增,则a的取值范围是(  )
A.(1,+∞)B.(0,1)C.(0,$\frac{1}{3}$)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知tanα,tanβ是方程3x2+5x-7=0的两根,求下列各式的值:
(1)tan(α+β);
(2)$\frac{sin(α+β)}{cos(α-β)}$;
(3)cos2(α+β)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如果lg4×lg8=lg64×lgm,那么m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若$\frac{sin(α-π)+cos(π-α)}{sin(π+α)-cos(π+α)}$=3,则tan(π+α)=2.

查看答案和解析>>

同步练习册答案