精英家教网 > 高中数学 > 题目详情

设F1,F2分别为双曲线数学公式的左右焦点,过F1引圆x2+y2=9的切线F1P交双曲线的右支于点P,T为切点,M为线段F1P的中点,O为坐标原点,则|MO|-|MT|等于


  1. A.
    4
  2. B.
    3
  3. C.
    2
  4. D.
    1
D
分析:由双曲线方程,算出c==5,根据三角形中位线定理和圆的切线的性质,并结合双曲线的定义可得|MO|-|MT|=4-a=1,得到本题答案.
解答:∵MO是△PF1F2的中位线,
∴|MO|=|PF2|,|MT|=|PF1|-|F1T|,
根据双曲线的方程得:
a=3,b=4,c==5,∴|OF1|=5,
∵PF1是圆x2+y2=9的切线,|OT|=3,
∴Rt△OTF1中,|FT|==4,
∴|MO|-|MT|=|=|PF2|-(|PF1|-|F1T|)=|F1T|-(|PF1|-|PF2|)=4-a=1
故选:D
点评:本题给出双曲线与圆的方程,求|MO|-|MT|的值,着重考查了双曲线的简单性质、三角形中位线定理和直线与圆的位置关系等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1、F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点.若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为(  )
A、3x±4y=0
B、3x±5y=0
C、4x±3y=0
D、5x±4y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2分别为双曲线:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,P为双曲线右支上任一点,若
|PF1|2
|PF2|
的最小值为8a,则该双曲线的离心率的取值范围是(  )
A、[3,+∞)
B、(1,3]
C、(1,
3
]
D、[
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,若在双曲线右支上存在点P,满足PF2=F1F2,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为
4x±3y=0
4x±3y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,以线段F1F2为直径的圆交双曲线左支于A,B两点,且∠AF1B=120°,若双曲线的离心率介于整数k与k+1之间,则k=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆一模)设F1、F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点.若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且点P的横坐标为
5
4
c(c为半焦距),则该双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案