精英家教网 > 高中数学 > 题目详情

【题目】已知等比数列满足:

1)求数列的通项公式;

2)是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由.

【答案】1an·3n-1,或an=-(-1n-1

2)不存在正整数m,使得≥1成立.

【解析】

试题(1)将已知条件转化为等比数列的首项和公比表示,转化为关于的方程组,通过解方程组得到的值,从而得到数列的通项公式;(2)将数列的通项公式代入求和,分情况判断对应的不等式是否成立

试题解析:(1)设等比数列{an}的公比为q

则由已知可得

解得

an·3n1,或an=-(-1n-1

2)若an·3n1,则·n1

{}是首项为,公比为的等比数列.

从而

an=-(-1n1,则=-(-1n1

{}是首项为-,公比为-1的等比数列.

从而<1

综上,对任何正整数m,总有<1

故不存在正整数m,使得≥1成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是定义在上的偶函数,对任意,都有,且当时,.在区间内关于的方程恰有个不同的实数根,则实数的取值范围是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】光线从点射出,到轴上的点后,被轴反射到轴上的点,又被轴反射,这时反射线恰好过点.

1)求所在直线的方程;

2)过点且斜率为的直线轴分别交于,过作直线的垂线,垂足为,求线段长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为三个内角的对边,向量.

(1)求角的大小;

(2)若,且面积为,求边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调区间;

2)若恒成立,求实数的取值范围;

3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,侧面为等边三角形且垂直于底面

.

(1)证明:

(2)若直线与平面所成角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是(

A.经过任意三点有且只有一个平面.

B.过点有且仅有一条直线与异面直线垂直.

C.一条直线与一个平面平行,它就和这个平面内的任意一条直线平行.

D.与平面相交,则公共点个数为有限个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】质检部门从某超市销售的甲、乙两种食用油中分别随机抽取100桶检测某项质量指标,由检测结果得到如图的频率分布直方图:

(I)写出频率分布直方图(甲)中的值;记甲、乙两种食用油100桶样本的质量指标的方差分别为,试比较的大小(只要求写出答案);

(Ⅱ)佑计在甲、乙两种食用油中各随机抽取1桶,恰有一个桶的质量指标大于20,且另—个桶的质量指标不大于20的概率;

(Ⅲ)由频率分布直方图可以认为,乙种食用油的质量指标值服从正态分布.其中近似为样本平均数近似为样本方差,设表示从乙种食用油中随机抽取10桶,其质量指标值位于(14.55, 38.45)的桶数,求的数学期望.

注:①同一组数据用该区间的中点值作代表,计算得

②若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线过原点.

1)若直线与圆相切,求直线的方程;

2)若直线与圆交于两点,当的面积最大时,求直线的方程.

查看答案和解析>>

同步练习册答案