精英家教网 > 高中数学 > 题目详情

(本题满分13分)

如图一,平面四边形关于直线对称,

沿折起(如图二),使二面角的余弦值等于。对于图二,

(Ⅰ)求

(Ⅱ)证明:平面

(Ⅲ)求直线与平面所成角的正弦值。

 

【答案】

(Ⅰ);(Ⅱ)见解析;(Ⅲ). 

【解析】

试题分析:(I)取BD的中点E,先证得∠AEC就是二面角A-BD-C的平面角,再在△ACE中利用余弦定理即可求得AC;

(II)欲证线面垂直,转化为证明线线垂直,证明AC⊥BC,AC⊥CD即可;

(III)欲求直线AC与平面ABD所成角,先结合(I)中的垂直关系作出直线AC与平面ABD所成角,最后利用直角三角形中的边角关系即可求出所成角的正弦值.

解:(Ⅰ)取的中点,连接

,得:                                      

就是二面角的平面角,……………2分

中,

   …………………………………4分                                                                                                                    

(Ⅱ)由

 

,   又平面.……………8分

(Ⅲ)方法一:由(Ⅰ)知平面平面

∴平面平面平面平面

,则平面

就是与平面所成的角.……13分

方法二:设点到平面的距离为

              

  于是与平面所成角的正弦为  

方法三:以所在直线分别为轴,轴和轴建立空间直角坐标系,  则

设平面的法向量为,则

,则,  于是与平面所成角的正弦即

. 

考点:本试题主要考查了余弦定理的运用,二面角、线面角的求法,线面垂直的判定,以及数形结合数学、空间想象能力或用向量解决立体几何问题的方法能力.

点评:解决该试题的关键是利用定义法得到二面角是该试题的突破口,并能结合三角形的与线订立的到边AC的长度。熟练运用线面垂直的判定定理和性质定理。

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届天津市高一第一次月考数学试卷(解析版) 题型:解答题

(本题满分13分)

已知集合.

(1) 求;   (2) 若,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012届浙江省宁波万里国际学校高三上期中理科数学试卷(解析版) 题型:解答题

(本题满分13分)的三个内角依次成等差数列.

   (Ⅰ)若,试判断的形状;

   (Ⅱ)若为钝角三角形,且,求

的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京市朝阳区高三上学期期末考试理科数学 题型:解答题

(本题满分13分)

在锐角中,分别为内角所对的边,且满足

(Ⅰ)求角的大小;

(Ⅱ)若,且,求的值.

 

查看答案和解析>>

科目:高中数学 来源:重庆市09-10学年高二下学期5月月考(数学文) 题型:解答题

(本题满分13分)展开式中,求:

(1)第6项;   (2) 第3项的系数;   (3)常数项。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省龙岩市高三上学期期末考试数学理卷(一级学校) 题型:解答题

(本题满分13分)

如图,在五面体ABCDEF中,FA平面ABCDAD//BC//FEABADAFABBCFEAD.

(Ⅰ)求异面直线BFDE所成角的余弦值;

(Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为?若存在,试确定点M的位置;若不存在,请说明理由.

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案