精英家教网 > 高中数学 > 题目详情
求证:
2sin(θ-
2
)cos(θ+
π
2
)-1
1-2cos2(θ+
3
2
π)
=
sinθ+cosθ
sinθ-cosθ
考点:运用诱导公式化简求值,同角三角函数基本关系的运用
专题:三角函数的求值
分析:化简可得左边=
2cosθ(-sinθ)-1
1-2sin2θ
=-
sin2θ+2sinθcosθ+cos2θ
cos2θ-sin2θ
,分解因式可得.
解答: 证明:由诱导公式可得左边=
2cosθ(-sinθ)-1
1-2sin2θ

=-
sin2θ+2sinθcosθ+cos2θ
cos2θ-sin2θ

=-
(cosθ+sinθ)2
(cosθ+sinθ)(cosθ-sinθ)

=
sinθ+cosθ
sinθ-cosθ
=右边
点评:本题考查三角恒等式的证明,涉及诱导公式和二倍角公式,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-2,x≤0
f(x-2)+1,x>0
,则f(2014)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正数a,b,c满足a≤b+c≤3a,b2≤a(a+c)≤3b2.求
c-b
a
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,真命题是(  )
A、函数f(x)=tan(
π
4
-2x)的单调递增区间为(-
π
8
+
2
8
+
2
),k∈Z
B、命题“?x∈R,x2-2>3”的否定是“?x∈R,x2-2<3”
C、z1,z2∈C,若z1,z2为共轭复数,则z1+z2为实数
D、x=
π
4
是函数f(x)=sin(x-
π
4
)的图象的一条对称轴

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α,β都是锐角,且tanα=
2
3
,tanβ=
9
4
,你能否根据正切函数的增减性直接判断α+β是否为锐角?

查看答案和解析>>

科目:高中数学 来源: 题型:

sin10°cos10°cos20°cos40°cos80°=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

分别过点A(1,3)和点B(2,4)的直线l1和l2互相平行且有最大距离,则l1的方程是(  )
A、x-y-4=0
B、x+y-4=0
C、x=1
D、y=3

查看答案和解析>>

科目:高中数学 来源: 题型:

cos2
π
5
+cos2
10
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

y=
|x2-1|
x-1
的图象与y=k恰有两个交点,求k的范围.

查看答案和解析>>

同步练习册答案