精英家教网 > 高中数学 > 题目详情

将编号为1,2,3,4的四个小球,分别放入编号为1,2,3,4的四个盒子,每个盒子中有且仅有一个小球.若小球的编号与盒子的编号相同,得1分,否则得0分.记为四个小球得分总和.
(1)求时的概率;
(2)求的概率分布及数学期望.

(1);(2)详见解析.

解析试题分析:(1)先确定时对应的事件,然后利用排列组合的相关知识求解;(2)将随机变量的可能取值确定下来,然后将对应的概率计算出来,列出分布列求出的数学期望与方差.
试题解析:(1)时,则编号为1,2,3,4的四个小球中有且仅有两个小球的编号与盒子的编号相同,
,即时的概率为;                                     3分
(2)的可能取值有,                                               4分

,                       
的分布列如下表所示



 







                                                                                 8分
,                                            9分
.                        10分
考点:排列组合、随机变量的分布列、数学期望与方差

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某食品企业一个月内被消费者投诉的次数用表示,椐统计,随机变量的概率分布如下:


0
1
2
3
p
0.1
0.3
2a
a
(1)求a的值和的数学期望;
(2)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了比较“传统式教学法”与我校所创立的“三步式教学法”的教学效果.共选100名学生随机分成两个班,每班50名学生,其中一班采取“传统式教学法”,二班实行“三步式教学法”
(Ⅰ)若全校共有学生2000名,其中男生1100名,现抽取100名学生对两种教学方式的受欢迎程度进行问卷调查,应抽取多少名女生?
(Ⅱ)下表1,2分别为实行“传统式教学”与“三步式教学”后的数学成绩:
表1

数学成绩
90分以下
90—120分
120—140分
140分以上
频   数
15
20
10
5
表2
数学成绩
90分以下
90—120分
120—140分
140分以上
频   数
5
40
3
2
完成下面2×2列联表,并回答是否有99%的把握认为这两种教学法有差异.
班  次
120分以下(人数)
120分以上(人数)
合计(人数)
一班
 
 
 
二班
 
 
 
合计
 
 
 
参考公式:,其中
参考数据:
P(K2≥k0)
0.40
0.25
0.10
0.05
0.010
0.005
k0
0.708
1.323
2.706
3.841
6.635
7.879

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解甲、乙两厂产品的质量,从两厂生产的产品中分别随机抽取各10件样品,测量产品中某种元素的含量(单位:毫克).如图是测量数据的茎叶图:

规定:当产品中的此种元素含量不小于18毫克时,该产品为优等品.
(1)试用上述样本数据估计甲、乙两厂生产的优等品率;
(2)从乙厂抽出的上述10件样品中,随机抽取3件,求抽到的3件样品中优等品数的分布列及其数学期望
(3)从甲厂的10件样品中有放回的随机抽取3件,也从乙厂的10件样品中有放回的随机抽取3件,求抽到的优等品数甲厂恰比乙厂多2件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某大学一个专业团队为某专业大学生研究了多款学习软件,其中有A、B、C三种软件投入使用,经一学年使用后,团队调查了这个专业大一四个班的使用情况,从各班抽取的样本人数如下表

班级




人数
3
2
3
4
(1)从这12人中随机抽取2人,求这2人恰好来自同一班级的概率.
(2)从这12名学生中,指定甲、乙、丙三人为代表,已知他们下午自习时间每人选择A、B两个软件学习的概率每个都是,且他们选择A、B、C任一款软件都是相互独立的.设这三名学生中下午自习时间选软件C的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,对该校高二年级800名学生上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有60人,语文成绩优秀但外语不优秀的有140人,外语成绩优秀但语文不优秀的有100人.
(Ⅰ)能否在犯错概率不超过0.001的前提下认为该校学生的语文成绩与外语成绩有关系?
(Ⅱ)将上述调查所得到的频率视为概率,从该校高二年级学生成绩中,有放回地随机抽取3名学生的成绩,记抽取的3 个成绩中语文,外语两科成绩至少有一科优秀的个数为X ,求X的分布列和期望E(x).


 
0.010
 
0.005
 
0.001
 

 
6.635
 
7.879
 
10.828
 
附:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了调査某大学学生在某天上网的时间,随机对lOO名男生和100名女生进行了不记名的问卷调查.得到了如下的统计结果:
表l:男生上网时间与频数分布表

表2:女生上网时间与频数分布表

(I)从这100名男生中任意选出3人,其中恰有1人上网时间少于60分钟的概率;
(II)完成下面的2X2列联表,并回答能否有90%的把握认为“大学生上网时间与性别有关”?
表3:

附:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(Ⅱ)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为,求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:

 
男性
女性
合计
反感
10
 
 
不反感
 
8
 
合计
 
 
30
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是
(Ⅰ)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路 ”与性别是否有关?
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
P(K2>k)
0.05
0.025
0.010
0.005
k
3.841
5.024
6.635
7.879
下面的临界值表供参考:
(参考公式:K2=,其中n="a+b+c+d)"

查看答案和解析>>

同步练习册答案