解:∵cosx-sinx=

,∴

(

cosx-

sinx)=

cos(x+

)=

得cos(x+

)=

又∵sin2x=-cos(

+2x)=1-2cos
2(x+

)=

∴f[

]=f(

)=f(7)
由题意y=f(x)关于直线x=3对称
∴f(3+x)=y=f(3-x)
即f(7)=f(3+4)=f(3-4)=f(-1)=320
分析:把cosx-sinx提取

,利用两角和的余弦函数公式的逆运算化为一个角的余弦函数,即可求得cos(x+

)的值,然后利用诱导公式把sin2x变为关于cos(x+

)的关系式,将cos(x+

)的值代入即可求出sin2x的值,把cos(x+

)的值和sin2x的值代入到f
[

]中,求得等于f(7),根据f(x)的图象关于直线x=3对称,得到f(3+x)=f(3-x),即可推出f(7)=f(-1)可求出值.
点评:考查学生灵活运用二倍角的正弦函数公式及两角和的余弦函数公式化简求值,会利用函数的对称性解决实际问题.