精英家教网 > 高中数学 > 题目详情
给出两个命题:
命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为∅,
命题乙:函数y=(2a2-a)x为增函数.
分别求出符合下列条件的实数a的范围.
(1)甲、乙至少有一个是真命题;
(2)甲、乙中有且只有一个是真命题.
分析:根据二次函数的图象和性质可以求出命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为∅为真命题时,a的取值范围A,根据对数函数的单调性与底数的关系,可以求出命题乙:函数y=(2a2-a)x为增函数为真命题时,a的取值范围B.
(1)若甲、乙至少有一个是真命题,则A∪B即为所求
(2)若甲、乙中有且只有一个是真命题,则(A∩CUB)∪(CUA∩B)即为所求.
解答:解:若命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为∅为真命题
则△=(a-1)2x-4a2=-3a2-2a+1<0
即3a2+2a-1>0,
解得A={a|a<-1,或a>
1
3
}
若命题乙:函数y=(2a2-a)x为增函数为真命题
则2a2-a>1
即2a2-a-1>0
解得B={a|a<-
1
2
,或a>1}
(1)若甲、乙至少有一个是真命题
则A∪B={a|a<-
1
2
或a>
1
3
};
(2)若甲、乙中有且只有一个是真命题
(A∩CUB)∪(CUA∩B)={a|
1
3
<a≤1或-1≤a<-
1
2
}.
点评:本题以复合命题的真假判断为载体考查了函数的性质,其中分析出命题甲乙为真时,a的取值范围,是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出两个命题:
命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为∅;
命题乙:函数y=(2a2-a)x为增函数.
(1)甲、乙至少有一个是真命题;
(2)甲、乙有且只有一个是真命题;
分别求出符合(1)(2)的实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出两个命题:
命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为φ;
命题乙:不等式2a2-a>log2x对任意x∈(0,2]恒成立,分别求出符合下列条件的实数a的取值范围.
(1)甲、乙至少有一个是真命题;
(2)甲、乙中有且只有一个是真命题.

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高中数学选修2-1 1.4全称量词与存在量词练习卷(解析版) 题型:解答题

给出两个命题:

命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为∅,

命题乙:函数y=(2a2-a)x为增函数.

分别求出符合下列条件的实数a的范围.

(1)甲、乙至少有一个是真命题;

(2)甲、乙中有且只有一个是真命题.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省聊城市某重点高中高二(上)期中数学试卷(理科)(解析版) 题型:解答题

给出两个命题:
命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为∅,
命题乙:函数y=(2a2-a)x为增函数.
分别求出符合下列条件的实数a的范围.
(1)甲、乙至少有一个是真命题;
(2)甲、乙中有且只有一个是真命题.

查看答案和解析>>

同步练习册答案