在斜三棱柱
中,侧面
平面
,
,
为
中点.![]()
(1)求证:
;
(2)求证:
平面
;
(3)若
,
,求三棱锥
的体积.
(1)参考解析;(2)参考解析;(3)![]()
解析试题分析:(1)要证明线面垂直,根据线面垂直的判断定理,需要证明直线垂直平面内的两条相交直线,或者用面面垂直的性质定理,转化为线面垂直在转到线线垂直的结论,本小题是根据题意,利用第二种方法证明.
(2)线面平面平行的证明,关键是在平面内找到一条直线与要证明的直线平行,根据D点是中点,利用中位线的知识可得到直线的平行,所以把直线
交点与点D连结即可.线面平行还有一种就是转化为面面平行.线面平行的证明就是这两种判断的相互转化.
(3)根据体积公式,以及题意很容易确定高以及底面的面积,即可求出体积.
试题解析:(1)证明:因为
,
所以
,
又 侧面
平面
,
且 平面
平面
,
平面
,
所以
平面
,
又
平面
,
所以
.
(2)证明:设
与
的交点为
,连接
,
在
中,
分别为
,
的中点,![]()
所以
,
又![]()
平面
,
平面
,
所以
平面
.
(3)解:由(1)知,
平面
,
所以三棱锥
的体积为
.
又
,
,
所以
, 所以
.
三棱锥
的体积等于
.
考点:1.线线垂直的判断.2.线面垂直的判定.3.线面平行的判断.4.棱锥的体积公式.5.空间想象能力.
科目:高中数学 来源: 题型:解答题
如图所示,矩形ABCD中,AB=a,AD=b,过点D作DE⊥AC于E,交直线AB于F.现将△ACD沿对角线AC折起到△PAC的位置,使二面角P
AC
B的大小为60°.过P作PH⊥EF于H.![]()
![]()
(1)求证:PH⊥平面ABC;
(2)若a+b=2,求四面体P
ABC体积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F是AB的中点.![]()
![]()
图1 图2
(1)求证:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥BDEG的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,
是圆柱体
的一条母线,
过底面圆的圆心
,
是圆
上不与点
、
重合的任意一点,已知棱
,
,
.![]()
(1)求证:
;
(2)将四面体
绕母线
转动一周,求
的三边在旋转过程中所围成的几何体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知四棱锥PABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC,AD的中点.
(1)求证:DE∥平面PFB;
(2)已知二面角PBFC的余弦值为
,求四棱锥PABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在三棱柱ABC-A1B1C1中,A1B⊥平面ABC,AB⊥AC.![]()
(1)求证:AC⊥BB1;
(2)若P是棱B1C1的中点,求平面PAB将三棱柱分成的两部分体积之比.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com