分析 先利用圆的切线长定理,推出要|PM|最小,只需|PC|最小,即圆心C到直线l的距离最小,利用点到直线的距离公式可计算此距离,即可解得PM的最小值.
解答 解:圆C:x2+y2-4x+3=0,可化为圆C:(x-2)2+y2=1,点P满足x-y+1=0.
由题意l与圆C只一个交点,说明l是圆C的切线,由于|PM|2=|PC|2-|CM|2=|PC|2-1,所以要|PM|最小,只需|PC|最小,
即点C到l的距离$\frac{|2-0+1|}{\sqrt{2}}$=$\frac{3}{2}\sqrt{2}$,
∴|PM|的最小值为$\sqrt{\frac{9}{2}-1}$=$\frac{\sqrt{14}}{2}$,
故答案为:$\frac{\sqrt{14}}{2}$.
点评 本题主要考查了直线与圆的位置关系,切线长定理,点到直线的距离公式,转化化归的思想方法,属基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | -3 | C. | $\frac{2}{3}$ | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{16}$ | B. | $\frac{3}{8}$ | C. | $\frac{5}{8}$ | D. | 不同于以上答案 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com